
MODERN ALGEBRA NOTES

KLINT QINAMI

Preamble. The following is a collection of exercises relating to modern algebra,
together with my proofs of those exercises. Use at your own risk.

Proposition 1. Let S be a set and G be a group. Let F pS,Gq be the set of all
functions f : S ÞÑ G. We can define a binary operation, denoted for a pair of
functions f, g P F pS,Gq as fg, to be such that @s P S, pfgqpsq “ fpsq ¨gpsq. F pS,Gq
forms a group with this operation.

Proof. To verify F pS,Gq forms a group with this operation, we must check the
existence of an identity element, the existence of inverses, and associativity.

The identity element for F pS,Gq will be the function i : S ÞÑ G such that @s P
S, ipsq “ e where e is the identity element in G. It is simple to check that for all
functions g P F pS,Gq, @s P S, pigqpsq “ ipsq ¨ gpsq “ e ¨ gpsq “ gpsq and pgiqpsq “
gpsq ¨ ipsq “ gpsq ¨ e “ gpsq.

For a function f P F pS,Gq, the inverse function f´1 P F pS,Gq is the function such
that @s P S, pff´1qpsq “ pf´1fqpsq “ f´1psq ¨ fpsq “ fpsq ¨ f´1psq “ e “ ipsq. This
function is well defined as @s P S, fpsq P G has a unique inverse by the definition
of group. This uniqueness means that @x, y P S, x “ y ùñ f´1pxq “ f´1pyq and
thus the inverse function exists and is well defined.

Finally, we need associativity. We see @f, g, p P F pS,Gq,@s P S, pfpgpqqpsq “
fpsq ¨ pgpsq ¨ ppsqq. By associativity of the group G, we have fpsq ¨ pgpsq ¨ ppsqq “
pfpsq¨gpsqq¨ppsq “ ppfgqpqpsq and thus the group operation on F pS,Gq is associative.

Since we have associativity, the identity element, and inverses, F pS,Gq forms a
group with the given binary operation.

Interpreting S “ G “ R, we have that F pS,Gq is the set of all real valued
functions with a real argument. We have function addition where @x P R,@f, g P
F pS,Gq, pf ` gqpxq “ fpxq ` gpxq. �

Proposition 2. tf P Σn � fp1q “ 1u is a subgroup of Σn.

Proof. Let S “ tf P Σn � fp1q “ 1u. The identity function id : xny ÞÑ xny is in S as
idp1q “ 1. Additionally, for any function f P S, we must have the inverse function
f´1 P S as f´1p1q “ 1. Associativity of function composition still remains in the
subgroup. Checking closure we see that @f, g P S, pf ˝ gqp1q “ fpgp1qq “ fp1q “ 1
and thus f ˝ g P B. Since we have associativity, the identity element, and inverses,S
is a subgroup of Σn. �

Proposition 3. For a set S and an element x P S, tf P Bij S � fpxq “ xu is a
subgroup of BijS which denotes the set of all bijections from S to itself with function
composition.
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Proof. Let B “ tf P Bij S � fpxq “ xu. Since the identity bijection id : S ÞÑ S
has idpxq “ x, id P B. Additionally, we also have that @f P B, f´1 is also in B
as f´1pxq “ x. Lastly, associativity of function composition remains. We also have
closure as @f, g P S, pf ˝ gqpxq “ fpgpxqq “ fpxq “ x and thus f ˝ g P B. Since we
satisfy all of the group axioms, B must be a subgroup of Bij S. �

Proposition 4. The only subgroups of Zˆ Z2 are of the form kZˆ Z2, kZˆ t0u,
and all tuples of the formpkZ, rZsq, where k is the least positive integer appearing as
a left element.

Proof. We can prove this by partitioning the subgroups into cases. First, let us
note the set of elements appearing as the first coordinate of any subgroup form a
subgroup of Z, namely of the form kZ. That is, for the least positive integer k
appearing as the left element, we must have all multiples of pk, 0q appearing as well.
This follows from the closure under addition, existence of inverse, and existence of
the identity.

Next we partition all subgroups into the cases where pk, 0q and pk, 1q are in the
subgroup, pk, 0q is in the subgroup only, and pk, 1q is in the subgroup only.

If both pk, 0q and pk, 1q appear, then we must have that the subgroup is kZˆZ2.
This is because we can always take p´k, 0q ` pk, 1q “ p0, 1q, and thus having p0, 1q
we can always get from pkz, 0q to pkz, 1q by adding p0, 1q and vice-versa.

If only pk, 0q appears, then we must have that our subgroup is of the form kZˆt0u.
To see why we cannot have any element pa, 1q appear, we note that if such an element
existed, then a must be a multiple of k by definition of k. If a is a multiple of k,
then we must also have pa, 0q be in the subgroup as we have all multiples kZ in
the subgroup. This would imply that p0, 1q is also in the subgroup, as we can take
p´a, 0q ` pa, 1q. But then this would mean pk, 1q is in the subgroup, as we could
take pk, 0q` p0, 1q, which is a contradiction and thus we must not have any element
of the form pa, 1q.

Lastly, if only pk, 1q appears, then we must have that the group has tuples of the
form pkZ, rZsq where r s indicate result modulo 2. This is because we must have all
integer multiples of pk, 1q in the subgroup, which we can write as Zpk, 1q, which is a
slight abuse of notation but tells us that all tuples of the form pkZ, rZsq are in the
subgroup. Now we must only show that there are no other kinds of elements in the
subgroup. This follows again from the fact that we do not have the element p0, 1q
in the subgroup for the same reason as above, and therefore if we have any element
pa, 0q, we must not have pa, 1q, and vice-versa. Since we know that there are no
tuples that do not contain a multiple of k as the left element of the tuple, we have
shown that all elements of the subgroup must be of the form pkZ, rZsq.

Since we have exhaustively enumerated all possible subgroups through a partition,
we are done. �

Proposition 5. If #G is even and G is a group, then there must exist an element
other than the identity which is its own inverse.

Proof. Let S “ tg P G � g ‰ g´1u. Let T “ tg P G � g “ g´1u.We must have
#S ` #T “ #G as S X T “ H and S Y T “ G. We also must have #S be even
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as each element can be paired with its own inverse. Since #G is even and #S is
even and #S`#T “ #G, then #T is even and therefore there must be an element
other than the identity that is its own inverse. �

Proposition 6. Let G be a group and g, h P G. Let e be the identity element in G.
Then gh “ hg ðñ h´1gh “ g ðñ g´1h´1gh “ e.

Proof. We have

gh “ hg

h´1gh “ h´1hg Def. equality

h´1gh “ eg Def. inverse

h´1gh “ g Def. identity

g´1h´1gh “ g´1g Def. equality

g´1h´1gh “ e Def. inverse

Since each step is invertible, we have shown the three way iff. �

Proposition 7. If G is a group and @g P G, g2 “ e, then G is abelian.

Proof. To show G is abelian, we need to show that @g, h P G, gh “ hg. All elements
in G are their own inverse, we must have

pghqpghq “ e

pghqpghqh “ h

pghqpgqphhq “ h Associativity

pghqg “ h Def. inverse

pghqgg “ hg

gh “ hg Def. inverse

Since we have commutativity, we know that G is abelian. �

Proposition 8. For groups G and H, GˆH is abelian ðñ G and H are abelian.

Proof. If G ˆ H is abelian, then for g1, g2 P G, h1, h2 P H, pg1, h1qpg2, h2q “
pg2, h2qpg1, h1q. This implies pg1g2, h1h2q “ pg2g1, h2h1q and g1g2 “ g2g1 and
h1h2 “ h2h1. Therefore, G and H are abelian.

If G and H are abelian, then @g1, g2 P G, h1, h2 P H, g1g2 “ g2g1 and h1h2 “ h2h1.
We thus have pg1, h1qpg2, h2q “ pg1g2, h1h2q “ pg2g1, h2h1q “ pg2, h2qpg1, h1q and
thus GˆH is abelian. �

Proposition 9. Let H ă K ă G with rG : H] finite. Then rG : Hs, rK : Hs are
also finite and rG : Hs “ rG : KsrK : Hs.

Proof. Consider f : G{H ÞÑ G{K such that fpgHq “ gK for some g P G. This
is well defined as gH “ g1H ùñ g1 “ gh for some h P H, and this means
fpg1Hq “ g1K “ ghK “ gK by H ă K. Thus gH “ g1H ùñ fpgHq “ fpg1Hq.



4 KLINT QINAMI

f must also be surjective, as for any gK P G{K we must have gH P G{H and thus
fpgHq “ gK.

Now we define a new bijection from the preimages of f to G{K, namely lg´1 :

f´1pgKq ÞÑ K{H such that lg´1pxHq “ g´1xH. We can see fpxHq “ xK “ gK

and thus g´1x P K. Checking that it’s well defined as for xH, x1H P f´1pgKq,
x “ x1h1 and lg´1px1Hq “ g´1x1H “ g´1xhH “ g´1xH “ lg´1pxHq. Checking

injectivity, we have lg´1pxHq “ lg´1px1Hq “ g´1xH “ g´1x1H. Multiplying by
g inverse on the left, xH “ x1H. Checking surjectivity, for any xH in the range
we have fpgxHq “ g´1gxH “ xH and thus the map is surjective and therefore is
bijective.

We know that we have a bijection from the preimages of f to G{K. Because f
is surjective then the preimages are non empty as G{K is nonempty as cosets are
never empty. Because the preimages are also disjoint, and their disjoint union is a
finite set (that is G{H is finite), we must have finitely many preimages and thus
G{K is finite. We also know that K{H has to be finite as we have a bijection lg´1

from the preimages of f and G{K.
Lastly we can create a bijection from u : G{K ÞÑ G{K ˆ K{H by arbitrarily

ordering the preimages of each gK as we know there are exactly rK{Hs of them
through our bijection lg´1. Since we have this bijection u, we must then have that
rG : Hs “ rG : KsrK : Hs. �

Proposition 10. If H ă G and K ă G, with rG : Hs “ m and rG : Ks “ n, then
lcmpm,nqs ď rG : H XKs ď mn. Also, if gcdpm,nq “ 1, then rG : H XKs “ rG :
HsrG : Ks.

Proof. Let us begin by quickly showing that H X K is a subgroup of K and a
subgroup of H. Since e P H^ e P K, e P pHXKq. Additionally, g P H^ g P K ùñ

g´1 P H ^ g´1 P K ùñ g´1 P pH XKq and thus we have closure under inverses.
Closure under the group operation follows as g, h P H^g, h P K ùñ gh P H^gh P
K ùñ gh P pH XKq.

Then by Proposition 9 we must have that

rG : H XKs “ rH : H XKsrG : Hs

“ mrH : H XKs

“ rH : H XKsrG : Hs

“ nrH : H XKs

Since rG : H XKs is a multiple of m and n, it must be greater than or equal to
the least common multiple of m and n.

All that’s left to show is that rG : H XKs ď mn. We can show this by defining
a function f : G{pH XKq ÞÑ G{H ˆ G{K. If we can define f such that it is well
defined and injective, then rG : H X Ks ď mn as #pG{H ˆ G{Kq “ mn and f
would be a bijection from the domain to a subset of the range. Let f be such that
for a coset gpH XKq P G{pH XKq, fpgpH XKqq “ pgH, gKq. To see that f is well
defined, we show gpH XKq “ g1pH XKq implies fpgpH XKqq “ fpg1pH XKqq. For
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this we will non-chronologically reference the equivalence relation in Proposition
5.

If gpH XKq “ g1pH XKq, then g
HXK
„ g1, and g1 “ gh1 for h1 P H XK. Since

H ă G and K ă G, then we must also have that g
H
„ g1 and g

K
„ g1. This means

gH “ g1H and gK “ g1K and thus fpgpH XKqq “ fpg1pH XKqq. This shows f is
well-defined.

Now we must show injectivity and be done. We have

fpgpH XKqq “ fpg1pH XKqq(1)

pgH, gKq “ pg1H, g1Kq(2)

gH “ g1H gK “ g1K(3)

gH X gK “ g1K X g1L(4)

gpH XKq “ g1pH XKq(5)

Step 5 is justified as the left cosets are bijections and for bijections g we have
gpS X T q “ gpSq X gpT q. Since fpgpH X Kqq “ fpg1pH X Kqq ùñ gpH X Kq “
g1pH XKq, f is injective and rG : H XKs ď mn.

To deduce that if gcdpm,nq “ 1, rG : H XKs “ rG : HsrG : Ks, we employ the
fact that lcmpm,nq ˆ gcdpm,nq “ mn. Since gcdpm,nq “ 1, then lcmpm,nq “ mn
and rG : H XKs “ mn “ rG : HsrG : Ks. �

Proposition 11. If H ă G, K ă G, and gcdp#H,#Kq “ 1, then H XK “ teu.

Proof. Since H X K ă H and H X K ă K, then by Lagrange’s Theorem #pH X

Kq � #K and #pH XKq � #H. We therefore must have that #pH XKq “ 1 as
gcdp#H,#Kq “ 1 and thus H XK “ teu. �

Proposition 12. If @g P G, f ˝ lg “ lg ˝ f , then f “ rh for some h P G.

Proof. pf ˝ lgq “ fplgpxqq “ fpgxq and plg ˝ fqpxq “ lgpfpxqq “ gfpxq and thus
@g P G, fpgxq “ gfpxq. Thus fpxq “ fpxeq “ xfpeq. Therefore for any x P G, we
can express fpxq “ xh “ rhpxq. �

Proposition 13. For H ă G, g „ g1 ðñ Dh P H s.t. g1 “ gh defines an
equivalence relation whose equivalence classes are left H-cosets.

Proof. „ is reflexive as g „ g, since for h “ e, we have g “ ge “ g and e P H
because H is a group. „ is also symmetric as g „ g1 implies g1 “ gh and thus
g1h´1 “ ghh´1 “ g and thus g1 „ g since h´1 P H by group closure under inverses.
Transitivity follows as x „ y implies y “ xh1 and y „ z implies z “ yh2 and
thus z “ xh1h2 and x „ z as h1h2 P H because of group closure under the group
operation.

To show the equivalence classes are the left cosets of H, we must show g „ g1 ðñ
g, g1 are in the same left coset. If g „ g1, then g1 “ gh and thus g1 P gH. Since we
also have that g P gH and that the left cosets are disjoint, then g, g1 are in the same
left coset and in no other cosets.
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We also have that if g and g1 are in the same left coset, then g P γH and g1 “ γH
for some γ P G. Then we must have g “ γh and g1 “ γh1. But then g1 “ gh´1h1

and thus g „ g1. �

Proposition 14. Let H ă G and f : G ÞÑ G such that fpxq “ x´1. Then f gives
a bijection from left cosets to right cosets.

Proof. Let us consider f : G ÞÑ G and prove this is a bijection. We must show
that f is injective and surjective. f is injective as if x “ y, then fpxq “ fpyq by
uniqueness of inverses. f is surjective as again as for any x, we have fpx´1q “ x.
Since f is bijective, we must have that Pf : PG ÞÑ PG is bijective, and thus is f is
a bijection on the left cosets of G.

Now we must only show that f takes left cosets to right cosets and we are done.
For any left coset gH where g P G, any element gh P gH gets mapped by f as
fpghq “ pghq´1 “ h´1g´1. Therefore we have that the image of fpgHq is Hg´1 and
thus f is a bijection from left cosets to right cosets. �

Proposition 15. #Zˆp “ p´ 1.

Proof. For all a P Zpzt0u, gcdpa, pq “ 1 since p is prime, and thus all a P Zpzt0u
have a reciprocal. Note that zero has no reciprocal as p0, pq “ p and p ‰ 1. Since
there are exactly p ´ 1 nonzero elements in Zn, we have that #Zˆp “ p ´ 1. This
also follows from the fact that the Euler Totient function φppq “ p´1 for any prime
p. �

Proposition 16. If p is prime, then @a P Z, ap ” a pmod pq.

Proof. Let us first consider the case where a “ 0. We have 0p “ 0 and thus
0p ” 0 pmod pq. For a ‰ 0, we can consider the group Zˆp . Let n be the order
of an arbitrary element a P Zp. The order of any element must divide the order
of the group, and thus n � p ´ 1. We then must have that, for some k P Z,
ap´1 ” ank ” panqk ” 1k ” 1 and thus ap ” a. �

Proposition 17. For all i P Z, RiS “ SR´i.

Proof. First, we consider i ě 0. For i “ 0, we have S “ S. Assuming RiS “ SR´i,
we have RiSR´1 “ SR´iR´1, by multiplying on the right by R´1. Using RS “
SR´1, we have RipRSq “ SR´pi`1q “ Ri`1S. The inductive hypothesis holds and
thus we have shown the proposition for non-negative i.

For negative i, we must have i “ ´j for some j ą 0. We know RjS “ SR´j .
This gives R´iS “ SRi. Multiplying on the left by S gives SR´iS “ S2Ri “ Ri.
Multiplying on the right by S gives SR´iS2 “ RiS “ SR´i and thus the formula
holds for all i P Z. �

Proposition 18. All elements of the form RiS have order 2.

Proof. Since RiS “ SR´i, we can multiply on the left by RiS and see RiSRiS “
RiSSR´i “ RipSSqR´i “ RiR´i “ e and thus pRiSqpRiSq “ e and all elements of
the form RiS have order 2. �
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Proposition 19. D2n “ xRS, Sy.

Proof. We know D2n is generated by R and S. Since R “ RSS and R´1 “ SRS,
then D2n must also be generated by xRS, Sy. We also have that S2 “ e and
pRSqpRSq “ e, and thus D2n is generated by two elements with order 2. �

Proposition 20. For n “ 2k where k ą 1, Rk commutes with all elements of D2n

and is the the only element besides the identity to do so.

Proof. For elements of the form Ri, we have RkRi “ Ri`k “ RiRk. For elements
of the form RiS, we see RkRiS “ RkSR´i “ SR´kR´i “ SR´iR´k “ RiSR´k “
RiSRk, where the last step uses Rk “ R´k as R2k “ Rn “ e. This shows Rk

commutes with all elements of the group.
To show uniqueness, consider an element Ri commutes with everything. Then we

have RiS “ SRi “ R´iS and thus Ri “ R´i and R2i “ e. Then either i “ 0, giving
that Ri “ e, or 2i “ n, giving that Ri “ Rk.

Lastly, we consider an element RiS that commutes with all other elements. We
must have pRiSqR “ RpRiSq “ RiR´1S “ Ri`1S and thus Ri´1 “ Ri`1. This
means i` 1´ pi´ 1q ” 0 (mod n) or that 2 ” 0(mod n). This can never happen for
n ą 2, and thus the element of the form RiS that commutes must not exist. This
shows that Rk and the identity are the only elements that commute with all other
elements of D2n when n is even. �

Proposition 21. For odd n, there is no element that commutes with every element
of D2n besides the identity.

Proof. Suppose such an element exists. If it is of the form Ri, then RiS “ SRi “
R´iS and Ri “ R´i and thus R2i “ e. This gives 2i ” 0 (mod n). Since n is
odd, this can never happen unless i “ 0, which would mean this element is the
identity. If this element is of the form RiS, we reach the same contradiction as
pRiSqS “ SpRiSq ùñ Ri “ R´i and thus 2i ” 0 (mod n). �

Proposition 22. For any group G, @g P G, D! homomorphism φ : ZÑ G such that
φp1q “ g.

Proof. For all n P Z, let φpnq “ gn. This is well defined as n “ m ùñ gn “ gm.
This is a homomorphism as φpn `mq “ gn`m “ gngm “ φpnqφpmq. We also see
φp1q “ g1 “ g. Consider another homomorphism ψ : Z Ñ G such that ψp1q “ g.
We know φp0q “ e “ ψp0q. Assume φpnq “ ψpnq for some positive n. Then
φpn` 1q “ φpnqφp1q “ ψpnqψp1q “ ψpn` 1q, thus ψ and φ agree on all nonegative
values of n. For negative values of n, let m “ ´n. Then φpnq “ φp´mq “ φpmq´1 “
ψpmq´1 “ ψp´mq “ ψpnq and they are identical for all n P Z. �

Proposition 23. Image of φ is a cyclic group.

Proof. Since for all n P Z, φpnq “ gn, all elements in the image of φ are of the form
gn, which form the group tgn � n P Zu, as the image of any homomorphism is a
group. �

Proposition 24. Any cyclic group is isomorphic to Z or Zn for some natural num-
ber n.
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Proof. Let G be a cyclic group with infinite order. Then we can define an iso-
morphism φ : Z Ñ G with φpnq “ gn when g is the generator of G. We have
already shown this mapping is well defined and a homomorphism. It is also sur-
jective as by definition of φ, for any gn P G,φpnq “ gn. It is also injective, as
gm “ gn ùñ m “ n. This follows as if m ‰ n, then gm´n “ e and this would
contradict that G has infinite order.

If G has finite order, then let n be }g} and also }G}. We can write any integer m
as nk` r, for some integers r, k, where rrs “ rms and 0 ď r ă n. We then construct
the isomorphism φ : Zn Ñ G such that φprmsq “ gr. If φprasq “ gl “ gk “ φprbsq,
then gk´l “ e, which can only happen if k ´ l “ 0, as the order of g is n and
0 ď k ă n and 0 ď l ă n. This means ras “ rbs as they have the same remainder
modulo n. Surjectivity also follows as for any gm, we can write m as nk ` r, and
thus gm “ gnk`r “ gnkgr “ pgnqkgr “ ekgr “ gr, and thus φprrsq “ gm. In both
cases φ is a bijective homomorphism and thus an isomorphism, making all cyclic
groups isomorphic to either Z or Zn. �

Proposition 25. If φ : GÑ H is an isomorphism, then for all g P G, }g} “ }φpgq}.

Proof. We know φpg0q “ φpeq “ e “ φpgq0. Assume φpgnq “ φpgqn for some positive
n. Then φpgn`1q “ φpgngq “ φpgqφpgnq “ φpgqφpgqn “ φpgqn`1. For some negative
n, let m “ ´n. Then φpgnq “ φpg´mq “ φpgmq´1 “ φpgq´m “ φpgqn. Thus
φpgnq “ φpgqn for all n P Z. Suppose }g} “ n and }φpgq} “ m for m,n P N. Since
φpgnq “ φpgqn “ e, m ď n. We also have that φpgqm “ φpeq “ φpgmq, and by
injectivity of φ, gm “ e. Then n ď m and thus m “ n and }g} “ }φpgq}.

Suppose g has infinite order but it’s image has order n for finite n. Then φpgqn “
e “ φpgnq and gn “ e, as φ is injective, but this contradicts our assumption that
g has infinite order, thus it’s image must also have infinite order. Alternatively, if
}φpgq} “ 8 and }g} “ m for some m, then φpgmq “ φpeq “ e “ φpgqm and thus φpgq
has finite order, which is a contradiction. Thus they must both have either finite
order or infinite order. We’ve shown that when they have finite order, they must be
equal, and when either has infinite order, then they must both have infinite order,
and therefore }g} “ }φpgq}. �

Proposition 26. Q8 fl D8

Proof. There is only one element in Q8 with order 2, namely ´1. All other elements
have either order 1 or 4. On the other hand, D8 has at least two elements with order
2, namely S and RS. Any isomorphism must map elements of order two to elements
of order two, yet since these groups have different numbers of elements with order
two, no such isomorphism can exist, and thus they are not isomorphic. �

Proposition 27. }g} “ n. Then for any homomorphism φ, }φpgq} divides }g}.

Proof. φpgnq “ e “ φpgqn. Thus the order of φpgq is at most n. Let }φpgq} “ m.
Then n “ mk ` r. We have φpgmk`rq “ φpgmkqφpgqr “ pφpgqmqkφpgqr “ ekφpgqr “
φpgqr. Since 0 ď r ă m, r “ 0 and thus the order of φpgq divides the order of g. �

Proposition 28. For two homomorphisms φ, ψ : GÑ H, tg P G � φpgq “ ψpgqu ă
G.



MODERN ALGEBRA NOTES 9

Proof. Since all homomorphisms map the identity to the identity, we must have
φpeq “ ψpeq and thus e P tg P G � φpgq “ ψpgqu. To see we also have closure under
inverses, we have φpgq “ ψpgq ùñ φpg´1q “ φpgq´1 “ ψpgq´1 “ ψpg´1q. Finally,
closure under the group operation follows as φpgq “ ψpgq and φphq “ ψphq means
φpghq “ φpgqφphq “ ψpgqψphq “ ψpghq. Since we have the identity element and
closure under inverses and the group operation, tg P G � φpgq “ ψpgqu must be a
subgroup of G. �

Proposition 29. The order of rigid motions of the cube is 48.

Proof. Here is a non-rigorous argument. Consider a corner of the cube. This corner
can be moved to any of the 8 corners of the cube. Considering a neighbor of the
corner, we see the neighbor can be mapped to 3 possible positions, namely the 3
neighbors of the image of the corner under the transformation. This is enough to
determine the entire transformation, up to a reflection about the plane intersecting
the two vertices and the antipodal vertices. This reflection gives 2 new arrangements.
We see that in total, we have 8ˆ 3ˆ 2 “ 48 total symmetries of the cube. �

Proposition 30. Let φ : G Ñ H be any homomorphism. Then J ă H implies
φ´1pJq ă G and J CH implies φ´1pJqCG.

Proof. We check that the φ´1pJq has the identity element, is closed under the group
operation, and is closed under inverses. φpeGq “ eH P J as J ă G, and thus
eG P φ

´1pJq. If g P φ´1pJq, let φpgq “ j P J . Then φpg´1q “ φpgq´1 “ j´1 P J
and thus g´1 P φ´1pJq. Let g1, g2 P φ

´1pJq. Then φpg1g2q “ φpg1qφpg2q P J as
φpg1q P J and φpg2q P J , thus we have all three properties of subgroups and φ´1pJq
is a subgroup of G.

If J C H, then hJ “ Jh for all h P H. Take g P φ´1pJq and g P G. We have
φpggq “ φpgqφpgq. Since φpgq P J , then φpgqφpgq “ φpgqφpgq “ φpggq since J CH
and φ is a homomorphism. Since φpggq “ φpggq, then gg “ gg as φ is well defined.
This holds for all g P G, and thus φ´1pJqCG. �

Proposition 31. A homomorphism φ : G Ñ H has kerφ “ 1 if and only if it is
injective.

Proof. Assume φ is injective. Since φ is a homomorphism, we must have that
φpeGq “ eH . Let g P G be such that φpgq “ eH . Then φpgq “ φpeGq and thus
g “ eG by injectivity of φ. This means the kernel of φ only contains the identity
element.

Assume the kernel of φ is trivial. Let φpg1q “ φpg2q for g1, g2 P G. Then
φpg1qφpg2q

´1 “ eH “ φpg1qφpg
´1
2 q “ φpg1g

´1
2 q. Since the kernel of φ is trivial,

we must have that only φpeGq “ eH , and thus g1g
´1
2 “ eG and g1 “ g2. Therefore

φ is injective since φpg1q “ φpg2q ùñ g1 “ g2. �

Proposition 32. rG : Hs “ 2 ùñ H CG.

Proof. If g P H, then gH “ H “ Hg. If g R H, then gH “ G ´ H since the left
cosets partition G and H is the only other left cosets besides gH. We must also
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have that Hg “ G´H as the right cosets also partition G. This implies gH “ Hg
for all G and thus H CG. �

Proposition 33. K CH CG does not imply K CG.

Proof. As a counterexample, consider D8 and xSyC xR2, SyC xR,Sy “ D8.
The only two elements in xSy are S and the identity. The identity commutes with

all elements. For elements of the form R2i P xR2, Sy, we know R4i “ e and thus
R2i “ R´2i, so R2iS “ SR´2i “ SR2i. For elements of the form R2iS, we have
R2iSS “ R2i “ SSR2i. Thus xSyC xR2, Sy.

Since xR2, Sy has index 2, it is normal by the previous proposition. Here is a
proof through cases for completeness. To show xR2, SyCD8, consider any element
of the form R2i P xR2, Sy and an element of the form Rk P D8. We have R2iRk “
R2i`k “ Rk`2i “ RkR2i. Consider an element of the form RkS P D8. We have
R2iRkS “ RkR2iS “ RkSR´2i “ RkSR2i as R2i “ R´2i. Now take elements of
the form R2iS P xR2, Sy. For elements of the form Rk P D8, we have R2iRkS “
RkR2iS “ RkSR´2i “ RkSR2i. Lastly, any element of the form R2iS P xR2, Sy
and an element of the form RkS P D8, we see the conjugation is in xR2, Sy as

RkSR2iSSR´k “ RkSR2i´k “ SR2pi´kq P xR2, Sy.
Finally, we check that xSy C D8. TakeRS P D8, the conjugation givesRSSSR´1 “

R2S R xSy. we’ve concluded the counterexample is valid and thus in general,
K CH CG ùñ K CG. �

Proposition 34. The set Aut G forms a group under composition.

Proof. Since every automorphism ψ : G Ñ G is an isomorphism, by the Main
Theorem on Inverses, there exists an inverse isomorphism ψ´1 : G Ñ G. Since the
inverse is an isomorphism and maps G to G, it is also an automorphism in Aut G.
This implies Aut G is closed under inverses. Associativity follows as composition
of functions is associative. The identity automorphism id maps all g P G back to
g. To see this is the identity, consider any automorphism ψ. We have pψ ˝ idqpgq “
ψpidpgqq “ ψpgq “ idpψpgqq “ pid ˝ gqpgq. Thus the set of all automorphisms of a
group G forms a group under composition. �

Proposition 35. For any h P G,φhpgq “ hgh´1 is an automorphism and f : GÑ
AutG such that fphq “ φh is a homomorphism.

Proof. Confirming φh is a homomorphism, consider g1, g2 P G. We have φpg1g2q “
hg1g2h

´1 “ hg1h
´1hg2h

´1 “ φhpg1qφhpg2q. Injectivity follows as φhpg1q “ φhpg2q
implies hg1h

´1hg2h
´1. Multiplying on the right by h and on the left by h´1 gives

g1 “ g2. Surjectivity also follows as for any g P G, take φhph
´1ghq “ hh´1gh´1h “

g.
Consider h1, h2 P G. We have fph1h2q “ φh1h2 . We must now show φh1h2 “

φh1 ˝ φh2 . First we note that ph1h2q
´1 “ h´12 h´11 (You put on socks first then shoes

but take off shoes first then socks). For any g P G,φh1h2pgq “ h1h2gh
´1
2 h´11 . We

also have that pφh1 ˝ φh2qpgq “ φh1pφh2pgqq “ φh1ph2gh
´1
2 q “ h1h2gh

´1
2 h´11 . Since

φh1h2 “ φh1 ˝ φh2 , we see that f is a homomorphism. �
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Proposition 36. fpGqCAutG.

Proof. Since fpGq is the image of a homomorphism, it is necessarily a subgroup. To
show normality, we need to show closure under conjugation. Consider an automor-
phism ψ. We must show for all g P G, ψ ˝ fpgq ˝ ψ´1 is in fpGq. For all h P G, we
see pψ ˝ fpgq ˝ ψ´1qphq “ pψ ˝ φg ˝ ψ

´1qphq “ ψpφgpψ
´1phqqq “ ψpgψ´1phqg´1q “

ψpgqψpψ´1phqqψpg´1q “ ψpgqhψpgq´1 “ φψpgqphq “ fpψpgqqphq P fpGq. �

Proposition 37. Aut Zn – Zˆn .

Proof. Consider a homomorphism φ : Zn Ñ Zn. Let φp1q “ a. Then φpnq “
φp

řn
i“1 1q “

řn
i“1 a “ a

řn
i“1 1 “ an. Thus any such homomorphism is a multipli-

cation by a. Furthermore, it is only an automorphism if pa, nq “ 1. This follows
because impφq “ Zn, and thus xay “ Zn. Thus the order of is a is n and thus a
must be coprime with n.

Consider the map ψ : Aut Zn Ñ Zˆn such that for all φ P Aut Zn, ψpφq “ φp1q.
Checking it’s a homomphism, for any automorphisms of Zn, φ1, φ2, we have ψpφ1 ˝
φ2q “ pφ1 ˝ φ2qp1q “ φ1pφ2p1qq “ φ2p1qφ1p1q “ ψpφ1qψpφ2q where φ1pφ2p1qq “
φ2p1qφ1p1q follows from the fact that such automorphisms are multiplications by
the image of 1. Injectivity follows as ψpφ1q “ ψpφ2q “ φ1p1q “ φ2p1q. Since the
the image of 1 under both automorphisms is the same, then they must be equal
as they are entirely determined by where they map 1. We have surjectivity as well
since for any z P Zˆn , take φ such that φp1q “ z. We see this automorphism exists
as pn, zq “ 1 and therefore ψpφq “ φp1q “ z. We can finally conclude that ψ is an
isomorphism and thus Aut Zn – Zˆn . �

Proposition 38. If N C G has prime index p, and if H ă G, then either H ă N
or G “ HN and rH : H XN s “ p.

Proof. Consider the homomorphism φ : GÑ G{N such that φpgq “ gN . Checking
it’s well defined we have g1 “ g2 ùñ g1N “ g2N . Checking it is a homomorphism,
we have φpg1g2q “ g1g2N “ g1g2NN “ g1Ng2N “ φpg1qφpg2q. This follows from
the fact that N CG.

Since the image of any subgroup under a homomorphism is a subgroup, it follows
that the order of φpHq � rG : N s. Since rG : N s is prime, the order of φpHq is
either 1 or p. If }φpHq} “ 1, then φpHq “ tNu (the trivial subgroup of G{N). Thus
H ă N as for all h P H,hN “ N .

If }φpHq} “ p, then φpHq “ G{N . Since the set of left cosets partition G,
their union must equal G, and thus G “ HN . A more explicit argument is that
φpHq “ G{N implies @g P G, gN “ hN for some h P H. Then g “ hn for some
n P N , and thus @g, g P G ðñ g P HN and thus G “ HN . The Second
Isomorphism Theorem states that H

HXN –
HN
N . Since G “ HN , we have H

HXN –
G
N

and thus rH : H XN s “ rG : N s “ p. �

Proposition 39. Suppose M CG and N CG and G “MN . Then G{pM XNq –
G{M ˆG{N .

Proof. Consider φ : G Ñ G{M ˆ G{N such that for all g P G,φpgq “ pgM, gNq.
Checking this is a homomorphism, for g1, g2 P G,φpg1g2q “ pg1g2M, g1g2Nq “
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pg1g2MM, g1g2NNq “ pg1Mg2M, g1Ng2Mq “ φpg1qpφpg2q, where we’ve used the
fact that g1M “Mg1 and g1N “ Ng1 (the normality of M and N).

Consider an arbitrary element pg1M, g2Nq P G{MˆG{N . Consider an element g3
such that g3M “ g1M and g3N “ g2N . If this element exists, then φ is surjective.
The first condition gives that g3 “ g1m for some m P M and the second gives that
g3 “ g2n for some n P N . This gives that g1m “ g2n or that g´12 g1 “ m´1n.
Since g “ MN , for any g P G, we have that g “ mn for some m P M and n P N .
Since g´12 g1 P G, then it can be expressed as some elements as m´1n for some m
and n and thus g3 exists and therefore φ is surjective. In particular, we have that
impφq “ G{M ˆG{N .

The kernel of φ are all elements g P G such that φpgq “ pM,Nq. Therefore it is
necessary and sufficient that g P M XN and so the kernel of φ is M XN . By the
First Isomorphism Theorem, we have that impφq – G{ kerφ and so G{M ˆG{N –

G{pM XNq. �

Proposition 40. Suppose M C G,N C G,G “ MN, and M X N “ 1. Then
G –M ˆN .

Proof. Since M X N “ 1, we have that G{pM X Nq “ G,M{pM X Nq “ M, and
N{pM XNq “ N . By Proposition 39, we have that G{pM XNq – G{M ˆG{N
and therefore G – G{M ˆ G{N . The Second Isomorphism Theorem gives that
M{pM X Nq – MN{N and thus M – G{N . Additionally, we have that N{pM X

Nq – MN{M and thus N – G{M . Thus G{N ˆ G{M – M ˆN . Finally, we get
that G –M ˆN . �

Proposition 41. If σ “ pa1 ¨ ¨ ¨ amq P Σn, then @i P xmy, σipakq “ aj for j P xmy
such that j ” k ` i (mod m) and |σ| “ m.

Proof. We will show this by induction on i. For i “ 0, we note σ0pakq “ ak and
k ” k (mod m). Assuming the proposition for i “ l, consider σl`1pakq. Let
σlpakq “ aj . We see σl`1pakq “ σpσlpakqq “ σpajq “ aj`1 (mod m) and thus the
inductive hypothesis holds as j ” k ` i (mod m) so j ` 1 ” k ` i` 1 (mod m). To
see σ has order m, consider σmpakq “ aj . Since j ” k`m (mod m), we have j ” k
and thus σmpakq “ ak for all k. This cannot happen for any i ă m as k ı k ` i
(mod m) for such an i, and thus the order of σ is m. �

Proposition 42. The order of τ P Σn is equal to the least common multiple of the
lengths of its disjoint cycle decomposition.

Proof. Let τ have disjoint cycle decomposition σ1σ2 . . . σn for some n. Since the
cycles commute, we must have that τ i “ pσ1σ2 . . . σnq

i “ σi1σ
i
2 . . . σ

i
n. τ i is the

identity if and only if each of its cycles are the identity, and each cycle is the
identity if and only if the original cycle in the disjoint cycle decomposition of τ has
been composed with itself i times such that i is a multiple of the original cycle’s
length by proposition 1 and the fact that each cycle is disjoint in the disjoint cycle
decomposition. Therefore, if τ i is the identity, i has to be a multiple of the lengths
of all the cycles in the disjoint cycle decomposition of τ , and the smallest of such
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multiples is necessarily the least common multiple. Thus τ has order equal to the
l.c.m. of the lengths of the cycles of its disjoint cycle decomposition. �

Proposition 43. Following are all numbers n such that Σ7 has an element of order
n. 1, 2, 3, 4, 5, 6, 7, 10, 12.

Proof. By Proposition42, the order of each element is the lcm of the lengths of
its disjoint cycle decomposition, so we need to come up with all of the possible
lcms. We readily see that we must have n “ 1, 2, 3, 4, 5, 6, 7 just by coming up with
permutations with a single cycle of those lengths. We note that the largest possible
order of an element in Σ7 is 12, which we can get from an element with two cycles of
order 3 and 4. We cannot have a permutation of order 11 as 11 is a prime number
greater than 7. We also cannot have a permutation of order 8 as the lcm of 4 and 2
is 4. Additionally, we cannot have a permutation of order 9 as the lcm of 3 and 3 is
just 3. Finally, we can get a permutation of order 10 with two cycles, one of length
5 and another of length 2. �

Proposition 44. Here we rewrite p123qp145q, and p123qp125q, and p23qp12qp23q as
products of disjoint cycles.

Proof. Composing right to left we see p123qp145q “ p14523q and that cycle has order
5. We see also that p123qp125q “ p13qp25q and that has order 2. Finally, we have
that p23qp12qp23q “ p13q and that has order 2. �

Proposition 45. For σ, τ P Σn, if

σ “ pa1a2 . . . akqpb1b2 . . . blq . . . pz1z2 . . . zmq

then τστ´1 has cycle decomposition

pτpa1qτpa2q . . . τpakqqpτpb1qτpb2q . . . τpblqq . . . pτpz1qτpz2q . . . τpzmqq

.

Proof. To verify the equality, we will consider τpgq for all g P xny. For j P xk ´ 1y,
we note τpσpτ´1pτpaiqqqq “ τpσpaiqq “ τpai`1q and see the equality holds. For
i “ k, note τpσpτ´1pτpakqqqq “ τpσpakqq “ τpa0q and the equality holds. The
case for elements b . . . z follows similarly. Lastly, consider an element h such that
σphq “ h. We check that τpσpτ´1pτphqqqq “ τpσphqq “ τphq and thus such elements
are sent back to themselves and thus the proposition holds. Since we have shown
the proposition for all elements τpaq such that σpaq ‰ a and all elements τpaq such
that σpaq “ a, we have shown it for all elements. �

Proposition 46. If σ “ p12q and τ “ p12345q P Σ5, then Σ5 “ xtσ, τuy.
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Proof. We can make an exhaustive list of all transpositions, showing how they can
be created using σ and τ .

p12q “ σ

p23q “ τ ˝ σ ˝ τ´1

p13q “ p23qp12qp23q

p34q “ τ2 ˝ σ ˝ τ´2

p14q “ p13qp34qp13q

p51q “ τ´1 ˝ τ

p45q “ τ3 ˝ σ ˝ τ´3

p24q “ p12345qp13q

p35q “ p12345qp24q

p25q “ p12345qp14q

�

Proposition 47. If G is a finite group with HCG, then G has a composition series
where on of the terms is H.

Proof. Since H is normal in G, G{H is a subgroup of G. Also, since H and G{H are
finite, they must have their own composition series. Let 1CH1CH2C . . .CHm “ H
and 1CJ1CJ2 . . .CJn “ G{H be the composition series for H and G{H, respectively.
Let π : GÑ G{H be the natural projection. Let Gi “ π´1pJiq. Note that G0 “ H
as H “ π´1p1q. Consider π|Gi

: Gi Ñ Ji. By the First Isomorphism Theorem, we

have that Gi{H – Ji. Therefore, Ji{Ji´1 –
Gi{H
Gi´1{H

. We must have that Gi´1 CGi,

and thus by the Third Isomorphism theorem, Gi{H
Gi´1{H

– Gi{Gi´1. Since Ji{Ji´1 is

simple, Gi{Gi´1 must be simple. Finally, we can construct a composition series for
G by stitching the Hi and Gj together, giving

1CH1 CH2 C . . .CHm “ H “ G0 CG1 CG2 C . . .CGn “ G

Since this composition series has H appearing as a term, the proposition is proven.
�

Proposition 48. For a group G with composition series 1CN CG, there does not
necessarily exist a second composition series 1 C H C G such that N – G{H and
G{N – H.

Proof. Consider for a counterexample Σ5 and the composition series 1 C A5 C Σ5.
Suppose for a contradiction there exists a normal subgroup N – Σ5{A5 as Σ5{A5.
Then N must have order 2, as Σ5{A5 has order 2. We therefore must have that
N “ t1, σu where σ is either a transposition or the composition of two disjoint
transpositions by Proposition 2. However, by Proposition 5, we can conjugate σ by
another permutation τ such that τστ´1 is not in N by letting τ “ p12345q, and thus
N is not normal. �
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Proposition 49. Let G

œ

S. Then s „ t ðñ s “ g ¨ t is an equivalence relation.

Proof. Reflexivity of „ follows from the identity Axiom of group actions, namely
that s “ e ¨s so s „ s for all s P S. It is also symmetric. s „ t implies s “ g ¨t. Then,
multiplying on the left by g´1 gives g´1 ¨s “ g´1 ¨pg ¨tq. By the compatibility axiom,
we have g´1 ¨ s “ pg´1gq ¨ t “ e ¨ t “ t and thus t „ s. For transitivity, consider s „ t
and t „ u. Then s “ g1 ¨t and t “ g2 ¨u. Substituting gives s “ g1 ¨pg2 ¨uq “ pg1g2q¨u
and thus s „ u. �

Proposition 50. g ¨ h :“ ghg´1 defines an action G

œ

G.

Proof. We check the two axioms. For the identity axiom, we have that e ¨ h “
ehe´1 “ h for all h P G. For the compatibility axiom, we have g1 ¨ pg2 ¨ hq “
g1 ¨ pg1hg

´1
1 q “ g2g1hg

´1
1 g´12 “ pg2g1q ¨ h. �

Proposition 51. g ¨ h :“ ghg´1 defines an action G

œ

G.

Proof. Q8 has 5 orbits, O “ tt1u, t´1u, ti,´iu, tj,´ju, tk,´kuu. 1 and ´1 are in
the center, so they’re in their own conjugacy classes. We also see i “ j ´ ij´1 “
j ´ i ´ j “ jij “ jk “ i and similarly for j,´j and k,´k. We see we cannot go
from j “ gig´1 by trying out all g, similarly for j, k and i, k.

For D10, we have 4 orbits, O “ tteu, tS,RS,R2S,R3S,R4Su, tR,R4u, tR2, R3uu.
Again, e is in the center so it is the only element in its conjugation class. We can
get from S to any RiS as RjSSpRjSq´1 “ RjSR´j “ R2jS. Letting j “ 1, 2, 3, 4
gives R2S,R4S,R6S “ RS,R8S “ R3S. Conjugation S by an itself gives back S,
and conjugating by a rotation again gives R2iS. We can see that R “ SR4S “ R´4

and R2 “ SR3S “ R´3. This gives the result.
For Z5, every element is in itss own conjugacy class, as the group is abelian, so the

center is the entire group. We thus have O “ ttr0su, tr1su, tr2su, tr3su, tr4suu. �

Proposition 52. Let H ă G. Then g ¨ kH :“ gkH specifies a well defined and

transitive action G

œ

G{H.

Proof. It’s well defined as k1H “ k2H implies gk1H “ gk2H as we can multiply
on the left by g´1. To check the identity axiom, notice that e ¨ kH “ ekH “ kH.
Compatibility also follows as g1 ¨ pg2 ¨ kHq “ g1 ¨ pg2kHq “ g1g2kH “ pg1g2q ¨ kH.

Consider k1H and k2H. Then k1H “ gk2H. Letting g “ k1k
´1
2 , we have k1H “

k1k
´1
2 k2H “ k1H. Thus the action is transitive as all elements are in the same

orbit. �

Proposition 53. The stabilizer of s “ kH is GS “ kHk´1.

Proof. Let g be a stabilizer of s. Then g ¨ kH “ kH. This gives that gk “ kh for
some h P H. Thus g “ khk´1. Thus Gs “ tkhk

´1 | h P Hu “ kHk´1. �

Proposition 54. Σn acts on P xny by σ ¨ S :“ σpSq, where σ : xny Ñ xny and
S Ă xny.

Proof. Checking the identity axiom, we see idxny ¨ S “ idxnypSq “ S. Checking
compatibility, we note σ ¨ pτ ¨ Sq “ σ ¨ pτpSqq “ σpτpSqq “ pσ ˝ τqpSq. �
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Proposition 55. There are n` 1 orbits of Σn

œ

P xny.

Proof. For two subsets of xny to have the same orbit, there must be exist a bijection
between them. This means that for any two subsets U, V , U „ V ùñ |U | “ |V |.
Additionally, if |U | “ |V |, we can always construct a bijection σ : U Ñ V , so
|U | “ |V | ùñ U „ V . There can be subsets of size 0 to n, so there must be n` 1

possibles orbits of Σn

œ

P xny. �

Proposition 56. The group of rotations G of a regular tetrahedron is isomorphic
to A4.

Proof. Consider the action of G on the set of faces of the tetrahedron. Each face
can be rotated to any other face, so they must all be in the same orbit. That is, G
acts transitively on the 4 faces. Additionally, the stabilizer for any face consists of
the identity, rotation counterclockwise through axis going through midpoint of the
face, and rotation clockwise through axis going through the midpoint of the face,
giving that 3 elements compose the stabilizer.

By the counting formula, we have #G “ #Os#Gs “ 4ˆ3 “ 12. Thus #G “ #A4

as #A4 “
4!
2 “ 12. Label the vertices of the tetrahedron with the numbers 1, 2, 3, 4.

The rotations consist of the identity rotation e, rotations about the axis joining the
midpoints of two edges about two vertices to be interchanged given by

(12)(34) is a rotation about the axis connecting the midpoint between vertices 1
and 2 and vertices 3 and 4. Similarly, we have (13)(24) and (14)(23).

Additionally, we have rotations by 2π
3 going through a vertex and the center of

its opposite face. One such rotation is (123), rotating about the axis going through
vertex 4 and the face triangle with vertices 1, 2, and 3. Other such rotations are
(234), (132), (243), (314), (412), (341), (421).

Since any action determines a homomorphism, we must have a homomorphism
from G to the bijections of the set of vertices of the tetrahedron, or Σ4. The action
is faithful because the only rotation that fixes all the vertices is the identity, and
thus the kernel of the homomorphism is trivial. The image of the homomorphism
is A4, as they have the same order and all permuations have an even number of
even length cycles in their cycle decomposition. Thus, by the First Isomorphism
Theorem, we have that Imφ – G{ kerφ or A4 – G. �

Proposition 57. The group of rotations H of a cube is isomorphic to Σ4.

Proof. Consider the action of G on the faces of the cube. Since any face can be
rotated into any other face, the orbits must consist of a single orbit with all of the
6 faces of the cube. Additionally, for any face, the stabilizer consists of the identity
rotation, as well as three rotations about the axis going through the center of the
face. By the counting formula, the order of H must be 6ˆ 4 “ 24.

The action of H on the set of opposite vertices defines a homomorphism from H
to the set of bijections of the four diagonals, or Σ4 if we label the diagonals 1, 2,
3, and 4. This action is faithful, as the only way to fix all four diagonals without a
reflection is by doing nothing. This gives that φ is an isomorphism since it’s kernel
is trivial and |G| “ 24. �
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Proposition 58. ZGCG.

Proof. Consider φ : G Ñ Aut G given by g Ñ ψg where ψgphq “ ghg´1. ψg is an
automorphism, φ is a homomorphism. Elements in the kernel of φ satisfy ghg´1 “ h
thus gh “ hg for all h and g P ZG. Therefore, kerφ “ ZGCG. �

Proposition 59. If rG : ZGs “ n, then each conjugacy class in G has at most n
elements.

Proof. Consider G

œ

G by conjugation. Then ZG ă Gg where Gg is the stabilizer
group of any element g P G. We have rG : ZGs “ rG : GgsrGg : ZGs. Since
rG : Ggs “ #Og where Og is the orbit or conjugacy class of g, and thus #Og divides
rG : ZGs “ n. In particular, #Og is at most n. �

Proposition 60. The number of ways to color the faces of a regular tetrahedron up
to rotational equivalence with n colors is 1

12pn
4 ` 11n2q.

Proof. Let G be the group of rotations of a regular tetrahedron, F be the set of faces
of a regular tetrahedron, and C be the set of n colors. Let S “ F ˆ C. Consider

G

œ

S. We have that |G| “ 12 (This follows by considering that G acts transitively
on the 4 faces, and each there are 3 rotations that fix a face, and the use of the
orbit-stabilizer theorem). Thus by Burnside’s Lemma, the number of orbits (equal
to the number of ways to color the faces up to rotational equivalence) is

|S{G| “
1

12

ÿ

gPG

|Sg|

The identity rotation fixes all n4 face colorings.
Additionally, the 8 rotations about the axis through a vertex and the center of

the opposite face fix the face and color of the opposite vertex. Since they sway all
other faces, those faces must have the same color. This gives n2 possible colorings.

Lastly, consider the rotations about the axis joining two opposite edges. There
are 3 such rotations, and since they swap two sets of faces, they must have the same
colors, again giving n2 colorings. Summing these up we get

1

12
pn4 ` 11n2q

For n “ 3, we have 15 possible colorings. �

Proposition 61. Each σ P Σn fixes, on average, one subset S Ă xny with exactly
m elements.

Proof. Let T “ tS P P xny | #S “ mu. Consider Σn

œ

T by σ ¨ S “ σpSq. This
action is transitive as any two sets S,U P T have the same cardinality, and thus
there exists σ P Σn such that σpSq “ U . Thus by Burnside’s Lemma, the average
number of subsets of size m fixed by any permutation σ is 1. �

Proposition 62. The number of conjugacy classes in the dihedral group D2n is
pn` 3q{2 for odd n and pn` 6q{2 for even n.
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Proof. Consider D2n

œ

D2n by conjugation. By Burnside’s Lemma, the number of

conjugacy classes is 1
2n

ř

gPD2n
|Dg

2n|. It suffices to sum all fixed point sets.

D2n n “ 2k n “ 2k ` 1
e 2n 2n
S 1e ` 1S ` 1Rk ` 1RkS 1e ` 1S
Ri if i ‰ k, p1e ` n´ 1` 1q else p2nq 1e ` n´ 1
RiS if i ‰ k p1e ` 1RiS ` 1Rkq else 1e ` 1S ` 1RiS ` 1Rk 1e ` 1RiS

The results of the table follow as the identity fixes all 2n elements. The reflection S
fixes the identity and itself. For even n “ 2k, it also fixes Rk as and RkS. All n´ 1
rotations fix the identity and all other rotations. For even n, Rk also fixes all 2n
elements and rotations fix RkS. Elements RiS also fix the identity and themselves.
For even n, they also fix Rk. The element RkS also fixes S.

Summing these results for even n gives

1

2n
p2n` 4` pn´ 2qpn` 1q ` 2n` 3pn´ 2q ` 4q

1

2n
p2n` 4` n2 ´ n´ 2` 2n` 3n´ 6` 4q

1

2n
pn2 ` 6nq

n` 6

2

Summing the results for odd n gives

1

2n
p2n` 2` pn´ 1qpnq ` 2pn´ 1q

n` 3

2

�

Proposition 63. Any finite group G with two conjugacy classes is isomorphic to
Z2.

Proof. The identity element is in its own conjugacy class of order 1. Thus, the other
conjugacy class Og must have order |G| ´ 1, as the conjugacy classes partition G.
By the orbit-stabilizer theorem, |G| ´ 1 divides |G| and therefore |G| “ 2. Since G
is a cyclic group of order two, it is isomorphic to Z2. �

Proposition 64. Any group G with |G| “ 20 has exactly 4 elements of order 5.

Proof. Since 20 “ 5 ˆ 22, the First Sylow Theorem guarantees that G has a Sylow
5-subgroup, P5. By the Third Sylow Theorem, P5 must be unique, as the number
of Sylow 5-subgroups must divide 22 and be congruent to 1 modulo 5. Since the
order of any element g P P5 divides 1 or 5, there must be 4 non-identity elements
with order 5. There cannot be any other element h R P5 with |h| “ 5 because if
there were, then xhy “ P5, a contradiction. �
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Proposition 65. If G is a group such that its only subgroups are 1 and G, then G
is cyclic.

Proof. If G is the trivial group, then G “ xey. Otherwise, pick any non-identity ele-
ment g P G. Since xgy contains the identity and g, it cannot be trivial. Furthermore,
since G has no other subgroups other than itself, xgy “ G. �

Proposition 66. If G is a nontrivial, simple p-group, it must have order p.

Proof. Assume for a contradiction that |G| “ pn for n ą 1. Since G is a p-group,
ZG ‰ 1. If ZG ‰ G, then G is not simple. Otherwise, ZG “ G and G is abelian.
Since G is simple, it must not have any non-trivial, proper subgroups. By Proposi-
tion 65, G is cyclic. Pick any non-identity element of g P G. If g is not a generator,
then xgy ‰ G and xgy ‰ 1, and thus G is not simple. Otherwise, |g| “ pn and thus
|gp| “ pn´1. Therefore xgpy ‰ G and xgpy ‰ 1 and so G is not simple. Therefore, it
cannot be that G does not have order p. �

Proposition 67. If G is a p-group, every composition factor of G is isomorphic to
Zp.

Proof. Let 1 “ N0CN1CN2C ¨ ¨ ¨CNn “ G be a composition series for G. Consider
any composition factor Ni`1{Ni. This composition factor is necessarily a p-group
and simple. It follows by Proposition 66 that the composition factor has order p
and thus Ni`1{Ni – Zp. �

Proposition 68. A Sylow p-subgroup P of G is unique iff it is normal.

Proof. Conjugating P by any element gives a subgroup of the same order, which
must be P since P is unique and therefore P must be normal. If P is normal, it
must be unique since all Sylow p-subgroups are conjugate. �

Proposition 69. Any group G with |G| “ 132 is not simple.

Proof. Since 132 “ 22ˆ3ˆ11, there exists a Sylow 11-subgroup, P11. Furthermore,
it must be unique as the number of Sylow 11-subgroups divides 12 and is equal to
1 modulo 11. Since P11 is unique, it must be normal by Proposition 68, and thus
G cannot be simple. �

Proposition 70. Any group G with |G| “ 33 is isomorphic to Z3 ˆ Z11.

Proof. Since 33 “ 3ˆ11, there must exist a Sylow 11-subgroup, P11. This subgroup
is unique as the number of such elements must divide 3 and be congruent to 1 modulo
11. Similarly, there must also exist a unique Sylow 3-subgroup P3. Since both of the
subgroups are unique, they must be normal. Additionally, P3XP11 “ 1 as the order
of any element in the intersection must divide 3 and 11, and thus must have order 1.
We also have that P3 ă P3P11 and P11 ă P3P11 and thus |P3P11| is divisible by 3 and
11 and can be at most 33, and thus in fact must be 33. Therefore, G “ P3P11 and
by the Main Theorem on Direct Products, G “ P3P11 – P3 ˆ P11 – Z3 ˆ Z11. �

Proposition 71. k2 ” 1 (mod p) implies k ” 1 or k ” ´1 (mod p).



20 KLINT QINAMI

Proof. If k2 ” 1 (mod p), then pk ´ 1qpk ` 1q ” 0 (mod p). Since p is a prime, p
must divide either pk ´ 1q or pk ` 1q. Thus, k ” 1 (mod p) or k ” ´1 (mod p).
Since p ą 2, these solutions are distinct. �

Proposition 72. The only automorphisms φ : Zp Ñ Zp such that φ ˝ φ “ id are
φpgq “ g˘1.

Proof. Any such automorphism φ is determined by φpgq “ kg for some k P Zˆp . The
condition pφ ˝ φq “ id is satisfied if and only if for all g P Zp, pφ ˝ φqpgq “ φpφpgqq “
φpkgq “ k2g “ g and thus k2 ” 1 (mod p) which only holds for k ” 1 or k ” ´1
(mod p). �

Proposition 73. Any group G with |G| “ 2p is isomorphic to Zp ˆ Z2 or D2p.

Proof. G has a unique, normal Sylow p-subgroup Sp as the number of such subgroups
must divide 2 and be equal to 1 modulo p. Furthermore, G must also have a Sylow 2-
subgroup S2. It must also be the case that SpXS2 “ 1 as the order of the intersection
must divide both 2 and p. Since SpS2 is divisible by both 2 and p it must have order
2p and thus equal G. If S2 is normal, then G “ SpS2 – SpˆS2 – ZpˆZ2. Otherwise,
G “ S2Sp – Sp ¸ S2 – Zp ¸ Z2 – D2p where the action is conjugation. �

Proposition 74. Let N be a normal Sylow p-subgroup of G and H be any subgroup
of G. H XN must be the unique Sylow p-subgroup of H.

Proof. Since N is the unique Sylow p-subgroup of G, every p-subgroup of G is
contained in N . Consider for a contradiction that HXN is not a Sylow p-subgroup of
H. Then there exists some other Sylow p-subgroup P with an element not contained
in N , as otherwise it would be in the intersection. This cannot be as P must be
contained in N . Thus H XN must be a Sylow p-subgroup of H. Furthermore, it is
unique, as H XN is normal by the Second Isomorphism Theorem. �

Proposition 75. For n ě 3, ZΣn is trivial.

Proof. For an arbitrary non-identity element σ P Σn, let σpiq “ j for some i ‰ j.
Since n ě 3, there exists τ P Σn such that for some k ‰ i and k ‰ j, τ “ pkjq. Since
pτ ˝ σ ˝ τ´1qpiq “ k, τ ˝ σ ‰ σ ˝ τ and thus σ R ZΣn. �

Proposition 76. For n ě 3, Σn has no normal subgroup of order 2.

Proof. Assume for a contradiction that N “ te, σuCΣn. We must have that for all
τ P Σn, τ ˝ σ ˝ τ

´1 “ σ. This cannot be since by Proposition 75, the center of Σn

is trivial. �

Proposition 77. For n ě 5, An and 1 are the only proper, normal subgroups of
Σn.

Proof. Consider for a contradiction a proper, nontrivial, normal subgroup N C Σn.
Since An is simple, we must have N XAn “ 1 or N XAn “ An. If N XAn “ 1, then
by the Second Isomorphism Theorem, #N#An “ #NAn. Since rΣn : Ans “ 2,
#N “ 1 or #N “ 2. If #N “ 1, N is trivial. If #N “ 2, N cannot be normal by
75. If N XAn “ An, then N “ An or N “ Σn since rΣn : Ans “ 2. �
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Proposition 78. The center of a direct product is the direct product of the centers.

ZpG1 ˆ . . .ˆGnq “ ZG1 ˆ . . .ˆ ZGn

Proof. For n “ 1, the proposition follows trivially. For n “ 2, let ph1, h2q P ZpG1 ˆ

G2q. For all pg1, g2q P G1 ˆ G2, we have pg1, g2qph1, h2q “ ph1, h2qpg1, g2q and thus
h1g1 “ g1h1 and h2g2 “ g2h2. Hence, h1 P ZG1 and h2 P ZG2. Conversely,
consider pk1, k2q P ZG1ˆZG2. For all pg1, g2q P G1ˆG2, we have pk1, k2qpg1, g2q “
pk1g1, k2g2q “ pg1k1, g2k2q “ pg1, g2qpk1, k2q and thus pk1, k2q P ZpG1ˆG2q. Assume
the proposition holds for n “ k. Then

ZpG1q ˆ . . .ˆ ZGk ˆ ZGk`1 “ ZpG1 ˆ . . .ˆGkq ˆ ZGk`1 Inductive hypothesis

“ ZpG1 ˆ . . .ˆGk ˆGk`1q Case where n “ 2

�

Proposition 79. G1 ˆ . . . Gn is abelian if and only if each Gi is abelian.

Proof. A group G is abelian if and only if ZG “ G. Therefore, G1 ˆ . . . Gn “
ZpG1 ˆ . . . Gnq “ ZG1 ˆ . . .ˆ ZGn. Therefore, for all i, Gi “ ZGi and hence Gi is
abelian. Since each step is reversible, the converse holds. �

Proposition 80. For an abelian group A and n P N, the set Apnq of elements whose
order is finite and divides n is a subgroup.

Proof. Closure under multiplication follows as if |a| � n and |b| � n then anbn “ e “
pabqn and |ab| � n. Closure under inverses follows as for all a P A, |a| “ |a´1|. The
identity has order 1, which divides n. Therefore, this set must be a subgroup. �

Proposition 81. If A – B, then Apnq – Bpnq.

Proof. Consider an isomorphism ψ : A Ñ B. For all a P Apnq, |ψpaq| “ a and thus
|ψpaq| P Bpnq. We must have ψpApnqq ă Bpnq. By considering ψ´1 in a similar
manner, we must have ψ´1pBpnqq ă Apnq and therefore Apnq – Bpnq. �

Proposition 82. Z2 ˆ Z2 ˆ Z4 fl Z4 ˆ Z4.

Proof. It suffices to show Z2 ˆ Z2 fl Z4. We have pZ2 ˆ Z2qp2q “ Z2 ˆ Z2 while
Z4p2q “ tr0s, r2su, hence pZ2 ˆ Z2qp2q fl Z4p2q and Z2 ˆ Z2 fl Z4. �

Proposition 83. Let k be the number of partitions of an integer n. Let p be a
prime. The number of isomorphism classes of abelian groups of order pn is k.

Proof. Let G be an abelian group with |G| “ pn. Then G can be decomposed into
a direct product of cyclic groups. Let G – Zpk1 ˆ Zpk2 ˆ . . . ˆ Zpkm . We must

have that |G| “ |Zpk1 ˆ Zpk2 ˆ . . . ˆ Zpkm | “ |Zpk1 | ˆ |Zpk2 | ˆ . . . ˆ |Zpkm |. Thus

pn “ pk1 ˆ . . . ˆ pkm and hence n “ k1 ` . . . ` km. Therefore, the number of
isomorphism classes is the number of ways to partition n. �

Proposition 84. Abelian groups of order 400 have 10 isomorphism classes.
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Proof. Let A be an abelian group with |A| “ 400 “ 52ˆ24. We must have that A is
isomorphic to the direct product of its Sylow 5-subgroup and its Sylow 2-subgroup.
By Proposition 83, the number of isomorphism classes for the Sylow 2-subgroup
is the number of ways to partition 4 and the number of isomorphism classes for the
Sylow-5 subgroup is the number of ways to partition 2. 4 can be partitioned 5 ways
and 2 can be partitioned 2 ways. Hence the number of isomorphism classes for A is
5ˆ 2 “ 10. �

Proposition 85. Any finite abelian group is cyclic or contains a subgroup isomor-
phic to Zp ˆ Zp for some prime p.

Proof. Let G be a finite abelian group with cyclic decomposition G – Z
p
k1
1

ˆ . . .ˆ

Z
pkmm

. If the Z
p
ki
i

have pairwise coprime order, then by the Chinese Remainder

Theorem, G is cyclic. If G is not cyclic, then we must have that pi “ pj “ p for

some i ‰ j. Hence Zp ˆ Zp – pki´1Zpki ˆ pkj´1Z
pkj
– 1 ˆ . . . ˆ pki´1Zpki ˆ . . . ˆ

pkj´1Z
pkj
ˆ . . .ˆ 1 ă Zp1k1 ˆ . . .ˆ Zpmkm – G. �

Proposition 86. Let Bij R3 be the group of all bijections R3 Ñ R3. The subset of
Bij R3 consisting of translations is a subgroup isomorphic to the additive group R3.

Proof. Define φ : R3 Ñ Bij R3 such that φp~wqp~vq “ f~wp~vq “ ~v ` ~w. Note pf~u ˝
f~wqp~vq “ f~upf~wp~vqq “ f~up~v ` ~wq “ p~v ` ~wq ` ~u “ ~v ` p~w ` ~uq “ f~u`~wp~vq. Hence
φp~u ` ~wq “ f~u`~w “ f~u ˝ f~w “ φp~uq ˝ φp~wq and therefore φ is a homomorphism. If

φp~wq “ id, then for any ~v we have ~v ` ~w “ ~v, and thus ~w “ ~0. φ then has trivial
kernel and is injective. This gives that im φ – R3. Since the image of φ consists of
translations, we are done. �

Proposition 87. The subset SO(3) Ă Bij R3 consisting of rotations is a subgroup.

Proof. The identity matrix has determinant 1 and is orthogonal. Each transpose
acts as a two sided inverse and is orthogonal with unit determinant since

1 “ det I “ detATA “ detAdetAT “ 1ˆ detAT “ detAT

Any matrix product is also orthogonal and has unit determinant since

pABqpABq´1 “ I

pABq´1 “ BTAT “ pABqT

detAB “ detAdetB “ 1ˆ 1 “ 1

�

Proposition 88. Consider SO(3)

œ

R3 by A ¨ ~w “ A~w. The subset Aff R3 Ă Bij

R3 of bijections fp~vq “ ~w `A~v is a subgroup isomorphic to R3¸ SO(3).

Proof. Let gp~vq “ A~v ` ~w and fp~vq “ B~v ` ~u. The composition of affine functions
is affine since pf ˝ gqp~vq “ fpgp~vqq “ fpA~v` ~wq “ BpA~v` ~wq ` ~u “ BA~v`B~w` ~u.
Closure under inverses follows since f´1p~vq “ B´1~v ´ B´1~u gives pf ˝ f´1qp~vq “
fpf´1p~vqq “ fpA´1~v´A´1~uq “ ApA´1~v´A´1~uq ` ~u “ ~v. Checking the other side,
pf´1 ˝ fqp~vq “ f´1pfp~vqq “ fpA~v ` ~uq “ A´1pA~v ` ~uq ´A´1~u “ ~v.
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Let T Ă Bij R3 consisting of translations. Let fp~vq “ A~v ` ~w. Conjugating a
translation gp~vq “ ~v`~u gives pf˝g˝f´1qp~vq “ fpgpf´1p~vqqq “ fpgpA´1~v´A´1 ~wqq “
fpA´1~v ´ A´1 ~w ` ~uq “ ApA´1~v ´ A´1 ~w ` ~uq ` ~w “ ~v ´ ~w ` A~u ` ~w “ ~v ` A~u,
another translation. Hence, T CAff R3.

Since translations in R3 cannot be represented by 3 ˆ 3 matrices, we must have
TX SO(3) “ 1. By the main theorem on semi-direct products, AffR3 – T ¸ SO(3).

Let SO(3) act on translations by conjugation. Let SO(3) act on R3 by matrix
multiplication. Let φ : SO(3) Ñ SO(3) be the identity map. Let ψ : R3 Ñ T be
given by ψp~wqp~vq “ ~v ` ~w. φ is trivially an isomorphism and ψ is an isomorphism
by Proposition 87. Note that ψpA ¨ ~wqp~vq “ ~v ` A~w and pφpAq ¨ ψp~wqqp~vq “
pA ˝ ψp~wq ˝ A´1qp~vq “ Apψp~wqpA´1~vqq “ ApA´1~v ` ~wq “ ~v ` A~w. Hence β : R3¸

SO(3) Ñ T¸ SO(3) given by βp~w,Aq “ pψp~wq, φpAqq is an isomorphism. �

Proposition 89. Any permutation of the 3 non-identity elements of G “ Z2 ˆ Z2

defines an automorphism, and so AutG – Σ3.

Proof. Since each automorphism maps the identity to itself, the automorphism group
of G must be a subset of the group of permutations of the 3 non-identity elements
of G. These permutations are automorphisms since any permutation φ is a bijection
and the sum of any two non-identity elements yields the third, so φpa` bq “ φpcq “
φpaq ` φpbq. �

Proposition 90. Zˆ5 – Z4.

Proof. By Proposition 37, it suffices to show Aut Z5 – Z4. Each such automor-
phism is entirely determined by the image of the identity. Since it must map gener-
ators to generators, the identity can be mapped to 1, 2, 3 or 4. Thus |Aut Z5| “ 4.
Hence it must be isomorphic to Z4 or Z2ˆZ2. Since the automorphism with φp1q “ 2
has order 4, and all non-identity elements in Z2 ˆ Z2 have order 2, we must have
Aut Z5 – Z4. �

Proposition 91. Let p ă q be two primes. Any group G of order pq is isomorphic
to a semidirect product Zq ¸ Zp for some action of Zp on Zq.

Proof. G has a unique, normal Sylow q-subgroup Q since nq ” 1 (mod q) and
nq � p. G must also have a Sylow p-subgroup P with P XQ “ 1 and PQ “ G since
the order of any element in the intersection must divide p and q and the order of
PQ must divide pq and must be divisible by p and q and therefore must equal pq.
Hence, by the main theorem on semidirect products, G – Q ¸ P where the action
is conjugation.

Let ψ : QÑ Zq and φ : P Ñ Zp be two isomorphisms. Let Zp

œ

Zq by ris ¨ rjs :“

ψpφ´1prisq ¨ ψ´1prjsqq.
Note r0s ¨ rjs “ ψpφ´1pr0sq ¨ ψ´1prjsq “ ψpψ´1prjsqq “ rjs and ris ¨ prjs ¨ rksq “

ris ¨ψpφ´1prjsq ¨ψ´1prksqq “ ψpφ´1prisq ¨ψ´1pψpφ´1prjsq ¨ψ´1prksqqqq “ ψpφ´1prisq ¨
φ´1prjsq ¨ ψ´1prksqq “ ψpφ´1prijsq ¨ ψ´1prksqq “ rijs ¨ rks. Hence, the action is well
defined.

Additionally, ψpp ¨ qq “ φppq ¨ψpqq “ ψpφ´1pφppqq ¨ψ´1pψpqqqq “ ψpp ¨ qq and thus
β : Q ¸ P Ñ Zq ¸ Zp given by βpn, kq “ pψpnq, φpkqq is an isomorphism. Finally,
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G – Q ¸ P – Zq ¸ Zp equipped with the previously defined action, ris ¨ rjs :“
ψpφ´1prisq ¨ ψ´1prjsqq. �

Proposition 92. Any group G with |G| “ 55 is isomorphic to Z11ˆZ5 or Z11¸Z5

equipped with the action defined by the homomorphism f : Z5 ÞÑ Aut Z11 sending
1 ÞÑ ri ÞÑ i2s.

Proof. By Proposition 91 we see G – Z11¸Z5 equipped with some action. If the
Sylow 5-subgroup is normal, then the action is trivial and G is abelian since the
semidirect product reduces to the direct product.

Otherwise, the action must be nontrivial and G cannot be abelian. Consider two
different nontrivial actions defined by homomorphisms f, g : Z5 Ñ Aut Z11. The
image of any such homomorphism must have order 5, since it can send 1 to any
element of order 5, and since Aut Z11 – Z10, there are 5 possible elements, namely
the even elements. Furthermore, Z10 must have a unique Sylow 5-subgroup N .
Hence, any nontrivial action must give an isomorphism from Z5 Ñ N . Therefore
we have an isomorphism g´1 ˝ f : Z5 Ñ Z5. Letting φ “ g´1 ˝ f and ψ “ id, note
ψpfprisqprjsqq “ fprisqprjsq and gpφprisqqpψprjsqq “ gpg´1 ˝ fprisqqprjsq “ fprisqprjsq.
Hence, all semi-direct products Z11 ¸ Z5 with any non-trivial action must be iso-
morphic.

Therefore, we can specify any non-trivial action to pin down all non-trivial semi-
direct products, up to isomorphism. Let f be the homomorphism such that 1 ÞÑ
ri ÞÑ i2s. Putting these facts together gives that G is isomorphic to Z11 ˆ Z5 or
Z11 ¸ Z5 equipped with f . �

Proposition 93. Groups G of order 20 are isomorphic to one and only one of
Z20,Z10 ˆ Z2,Z5 ¸ Z4 with either the action sending 1 ÞÑ ri ÞÑ is or 1 ÞÑ ri ÞÑ i2s ,
or Z5 ¸ Z2 ˆ Z2 with the action sending p1, 0q ÞÑ ri ÞÑ i2s and p0, 1q ÞÑ ri ÞÑ i2s.

Proof. G has a unique, normal Sylow 5-subgroup S5 since n5 ” 1 (mod 5) and n5 � 2
and a Sylow 2-subgroup S2. Hence, G – S5¸S2. If S2 is normal, then the action is
trivial and G – S5ˆS2. If S2 – Z4, then G – Z5ˆZ4 – Z20. If S2 – Z2ˆZ2, then
G – Z5 ˆ Z2 ˆ Z2 – Z10 ˆ Z2. These are the only abelian isomorphism classes.

Otherwise, S2 is not normal and G is not abelian. If S2 – Z4, then let Z4

œ

Z5.
There are three non-trivial homomorphisms g, g1, g2 : Z4 ÞÑ Aut Z5 where gp1q “
ri ÞÑ is, g1p1q “ ri ÞÑ i2s and g2p1q “ ri ÞÑ i3s. Note that the semi-direct products
given by g and g2 are isomorphic, related by the automorphism of Z4 sending 1 ÞÑ 3.
The semi-direct product given by g1 is not isomorphic to either, however, since 2
acts trivially and is thus in the center of the semi-direct product given by g1 while it
is not in the center of the semi-direct products given by g, g2. Hence, we have two
isomorphism classes in this case, given by Z5 ¸ Z4 equipped either with g or g1.

The final case is if S2 is not normal and isomorphic to Z2 ˆ Z2. However, all

possible nontrivial actions of Z2ˆZ2

œ

Z5 give isomorphic semi-direct products, since
by Proposition 89, we can swap any non-identity elements arbitrarily to determine
an automorphism. Hence, we can choose the action defined by the homomorphism
sending p1, 0q ÞÑ ri ÞÑ i2s and p0, 1q ÞÑ ri ÞÑ i2s. �


