
ALGEBRAIC TOPOLOGY

KLINT QINAMI

Preamble. This document contains some exercises in algebraic topology, category theory,
and homological algebra. Most of them can be found as chapter exercises in Hatcher’s book
on algebraic topology. Use at your own risk.

Exercise 1. If a topological space X is contractible, then it is path-connected.

Proof. Let F be the homotopy between the identity map and the constant map fpxq “ x0
for some contraction point x0 P X. For all x P X, let γx “ F |txuˆI . γx is continuous
since restrictions of continuous functions are continuous. γxp0q “ F px, 0q “ idpxq “ x and
γxp1q “ F px, 1q “ fpxq “ x0, hence it is a well-defined path from x to x0. Thus, for any
x1, x2 P X, there exists a path from x1 to x2 given by xγx2 ˚ γx1 . 1 �

Exercise 2. If f, f 1 : X Ñ Y are homotopic and g, g1 : Y Ñ Z are homotopic, then
g ˝ f and g1 ˝ f 1 are homotopic.

Proof. Let F and G denote the homotopies between f, f 1 and g, g1 respectively. Let Hpx, tq “
GpF px, tq, tq. H is continuous and Hpx, 0q “ GpF px, 0q, 0q “ Gpfpxq, 0q “ gpfpxqq and
Hpx, 1q “ GpF px, 1q, 1q “ Gpf 1pxq, 1q “ g1pf 1pxqq, hence g ˝ f and g1 ˝ f 1 are homotopic. �

Exercise 3. (a) The composition of homotopy equivalences X Ñ Y and Y Ñ Z is a
homotopy equivalence X Ñ Z. Homotopy equivalence is an equivalence relation. (b)
The relation of homotopy among maps X Ñ Y is an equivalence relation. (c) A map
homotopic to a homotopy equivalence is a homotopy equivalence.

Proof. paq Let f : X Ñ Y and g : Y Ñ X be continuous functions such that f˝g is homotopic
to idY and g ˝ f is homotopic to idX . Similarly, let h, k be continuous functions such that
h ˝ k „ idZ and k ˝ h „ idY . Composing functions we have pg ˝ kq ˝ ph ˝ fq “ g ˝ pk ˝ hq ˝ f „
g ˝ idY ˝f „ g ˝f „ idX and ph˝fq ˝ pg ˝kq “ h˝ pf ˝gq ˝k „ h˝ idY ˝k „ h˝k „ idZ , where
we have used associativity of function composition and that homotopy is well-behaved with
respect to function composition (c). Since homotopy equivalence is reflective, symmetric,
and transitive, it is an equivalence relation.
pbq For any map f , f is homotopic to itself by the homotopy that is f identically throughout

the unit interval. If f „ g by F px, tq, then g „ f by F px, 1´tq. Lastly, homotopy is transitive
since homotopies can be pasted together by doubling speeds and gluing. Hence, homotopy
among functions is an equivalence relation.
pcq It suffices to show that if f „ f 1, then f ˝ g „ f 1 ˝ g. But if F px, tq is the homotopy

from f to f 1, then F ˝ g ˆ id is the homotopy from f ˝ g to f 1 ˝ g. �

1A wide hat over a path denotes the inverse path. That is, yγpsq “ γp1´ sq
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Exercise 4. (a) A space X is contractible iff every map f : X Ñ Y , for arbitrary
Y, is null-homotopic. (b) Similarly, X is contractible iff every map f : Y Ñ X is
null-homotopic.

Proof. paq p ùñ q Let F be a contraction of X to some contraction point x0. Then for any
map f : X Ñ Y , we have f ˝ F : X ˆ I Ñ Y giving the homotopy between f and the
constant map x ÞÑ fpx0q. p ðù q If every map f : X Ñ Y for arbitrary Y is null-homotopic,
then in particular idX is null-homotopic.
pbq p ùñ q Let F be a contraction of X to some contraction point x0. Then for any map

f : Y Ñ X, F pfpyq, tq is the desired homotopy from f to y ÞÑ x0. p ðù q If every map
f : Y Ñ X for arbitrary Y is null-homotopic, then in particular idX is null-homotopic. �

Exercise 5. (a) f : X Ñ Y is a homotopy equivalence if there exist maps g, h : Y Ñ X
such that fg – 1 and hf – 1. (b) More generally, f is a homotopy equivalence if fg
and hf are homotopy equivalences.

Proof. paq f is a homotopy equivalence since fphfgq “ fphfqg – fp1qg – fg – 1 and
phfgqf “ hpfgqf – hp1qf – 1. pbq This is entirely similar to the proof of paq. �

Exercise 6. For a path-connected space X, π1pXq is abelian iff all basepoint-change
homomorphisms βh depend only on the endpoints of the path h.

Proof. p ùñ q Consider any two paths h, h1 from x0 to x1. Consider any loop γ based
at x0. We have βhrγs “ rhγh´1s and βh1rγs “ rh1γh1´1s. Conjugating again, we have
rh´1sβhrγsrhs “ rγs and rh1´1sβh1rγsrh

1s “ rγs. Hence, βhrγs “ rhh1´1sβh1rγsrh
1h´1s “

rhh1´1srh1h´1sβh1rγs “ βh1rγs, since π1pXq is abelian.
p ðù q Let γ1 and γ2 be two loops based at x0. Decompose and reparametrize γ1 into

two paths δ1 “ γpr0, 1
2sq and δ2 “ γpr1

2 , 1sq. By assumption, we have that βδ1rγ2s “ βδ´1
2
rγ2s.

Explicitly, this gives rδ1γ2δ
´1
1 s “ rδ

´1
2 γ2δ2s. Multiplying on the right by δ1 and on the left by

δ2 gives rδ2δ1γ2s “ rγ2δ2δ1s. But δ2δ1 “ γ1, so π1pXq is abelian. �

Exercise 7. For a space X, the following three conditions are equivalent: (a) Every map
S1 Ñ X is homotopic to a constant map, with image a point. (b) Every map S1 Ñ X
extends to a map D2 Ñ X. (c) π1pX, x0q “ 0 for all x0 P X.

(d) It then follows that a space X is simply-connected iff all maps S1 Ñ X are homo-
topic. [Here, âĂŸhomotopicâĂŹ means âĂŸhomotopic without regard to basepointsâĂŹ.]

Proof. pa ùñ bq Let f : S1 Ñ X be any map and let h denote a homotopy from a
constant map to f . Then the extension of f is just given by the homotopy, rfpθ, rq “ hpθ, rq,
where θ, r give the usual angle-radius parametrization of the disk. For r “ 1, we have
rfpθ, 1q “ hpθ, 1q “ fpθq.
pb ùñ cq Let x0 be any point in X. Given an equivalence class in π1pX, x0q, a representa-

tive γ is a map S1 Ñ X, so it extends to a map D2 Ñ X, but the map it extends to is exactly
a based homotopy to a constant loop. Hence, every loop based at x0 is null-homotopic, so
π1pX, x0q is trivial.
pc ùñ aq The hypothesis π1pX, x0q for all x0 P X implies that all maps S1 Ñ X

homotopic to the trivial loop, and hence homotopic to a constant map.
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pdq p ùñ q If a space is simply connected, then π1pXq “ 0, so pcq holds, and thus paq holds.
But since X is path-connected, all maps homotopic to a constant map are homotopic. p ðù q
If all maps S1 Ñ X are homotopic, then in particular, the constant maps are homotopic,
and hence X is path-connected. Additionally, paq holds, which implies π1pXq “ 0. �

Exercise 8. From the isomorphism π1pXˆY, px0, y0qq – π1pX, x0qˆπ1pY, y0q, it follows
that loops in Xˆty0u and tx0uˆY represent commuting elements of π1pXˆY, px0, y0qq.
The following is an explicit homotopy demonstrating this.

Proof. Let γx : I Ñ X ˆ ty0u and γy : I Ñ tx0u ˆ Y be loops based at px0, y0q. Let

δxpt, sq “

$

’

&

’

%

x0 0 ď 2t ď s

π1pγxp2t´ sqq s ď 2t ď 1` s
x0 1` s ď 2t ď 2

δypt, sq “

$

’

&

’

%

y0 0 ď 2t ď 1´ s
π2pγyp2t´ sqq 1´ s ď 2t ď 2´ s
x0 2´ s ď 2t ď 2

Let Hpt, sq “ pδxpt, sq, δypt, sqq. H is continuous as δx and δy are continuous. Hpt, 0q “
pδxpt, 0q, δypt, 0qq “ γxγy and Hpt, 1q “ γyγx and Hp0, sq “ Hp1, sq “ px0, y0q, so H is a
based homotopy and rγxγys “ rγyγxs. �

Exercise 9. For a covering map p : rX Ñ X and a subspace A Ă X, let rA “ p´1pAq.
The restriction p : rAÑ A is a covering map.

Proof. Since p is a covering map, there exists an open cover tUαu of X by evenly covered
sets Uα. That is, for all α, p´1pUαq “

Ů

iPI V
i
α for some index set I, and the restriction

p : V i
α Ñ Uα for any particular i is a homeomorphism. Since the Uα cover X, tUαXAu is an

open cover of A. Additionally, for all α, p´1pUαXAq “ p´1pUαqXp
´1pAq “

Ů

iPI V
i
αXp

´1pAq.
p : V i

α Ñ Uα is a homeomorphism, so the restriction p : V i
αXp

´1pAq Ñ ppV i
αXp

´1pAqq is also
a homeomorphism. But ppV i

α X p´1pAqq “ Uα X A since a homeomorphism is in particular
bijective, so the Uα X A are evenly covered. Hence A has an open cover by evenly covered
sets, so the restriction p : p´1pAq Ñ A is a covering map. �

Exercise 10. Let rX and rY be simply-connected covering spaces of the path-connected,
locally path-connected spaces X and Y . If X » Y , then rX » rY .

Proof. Let p : rX Ñ X and q : rY Ñ Y be covering maps and let f : X Ñ Y and g : Y Ñ X
be homotopy equivalences such that fg – idY and gf – idX . Since p is a covering map,
pfpq˚pπ1p rXqq corresponds to the trivial subgroup, and X and Y are path-connected and
locally-path connected, so by the lifting criterion, fp, and similarly gq, extend to lifts Ăfp :
rX Ñ rY and rgq : rY Ñ rX such that qĂfp “ fp and p rgq “ gq.

Since p rgqĂfp “ gqĂfp “ gfp, by the lifting lemma applied to the homotopy gf – 1,
there exists a homotopy p rgqĂfp to p. This homotopy also lifts to a homotopy from rgqĂfp to
rp : rX Ñ rX., where rp is a lift of the covering map p.

But rp is a deck transformation, since prp “ p and rp is a homeomorphism.
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Hence, rp´1
rgqĂfp – rp´1

rp “ id
rX . A similar construction gives id

rY , and hence by Proposi-
tion 5, rX and rY are homotopy equivalent under Ăfp and rgq. �

Lemma 1. Let p : X Ñ Y be a covering map and let Y be locally path-connected. Then X
is locally path-connected.

Proof. Consider any point x P X and an open neighborhood U of x. Let V denote an evenly
covered neighborhood of ppxq. Let W be an open neighborhood of x such that p : W Ñ V
is a homeomorphism. U X W is then homeomorphic to ppU X W q, which contains ppxq.
But Y is path-connected, so there exists an open neighborhood O Ă ppU XW q that is path-
connected. Then the inverse image of O under the local homeomorphism is a path-connected
open neighborhood of x that is a subset of U , so X is locally path-connected. �

Exercise 11. For a covering map p : rX Ñ X with X connected, locally path-connected,
and semi-locally simply-connected, (a) the components of rX are in one-to-one correspon-
dence with the orbits of the action of π1pX, x0q on the fiber p´1px0q. (b) Under the Galois
correspondence between connected covering spaces of X and subgroups of π1pX, x0q, the
subgroup corresponding to the component of rX containing a given lift rx0 of x0 is the
stabilizer of rx0, the subgroup consisting of elements whose action on the fibers leaves rx0
fixed.

Proof. paq By Lemma 1, each connected component of rX is locally path-connected, and
hence path-connected. Consider any two elements rx1 and rx2 of the fiber p´1px0q in the same
component of rX. Since the component is path-connected, there exists a path γ from rx1 to
rx2. But then rpγs P π1pX, x0q, and prpγsq ¨ prx1q “ rx2, hence rx1 and rx2 are in the same orbit.
Now conversely, suppose rx1 and rx2 are points in the fiber p´1px0q and are in the same orbit.
Explicitly, there exists rγs P π1pX, x0q such that rγs ¨rx1 “ rx2. But then by the lifting lemma,
γ lifts to a path from rx1 to rx2, so rx1 and rx2 must be in the same component.
pbq Let rx0 be a given lift of x0. The stabilizer of rx0 is the set of all loops classes rγs such

that rγs¨rx0 “ rx0. But then any such γ must lift to a loop based at rx0. These are precisely the
elements in π1p rX, rx0q. Each statement is reversible, so the double containment holds. �

Exercise 12. Define f : S1 ˆ I Ñ S1 ˆ I by fpθ, sq “ pθ ` 2πs, sq, so f restricts to
the identity on the two boundary circles of S1 ˆ I. f is homotopic to the identity by a
homotopy ft that is stationary on one of the boundary circles, but not by any homotopy
rft that is stationary on both boundary circles.

Proof. ft is given explicitly by ftpθ, sq “ pθ ` 2πts, sq. Suppose for a contradiction that
a homotopy rft from f to the identity fixing both boundary circles existed. Then rft gives
a based homotopy from the trivial loop to the generator of π1pS

1q, pπ ˝ rf0 ˝ iqpsq “ 0 to
pπ ˝ rf1 ˝ iqpsq “ 2πs, which cannot exist.2 �

Exercise 13. Every homomorphism π1pS
1q Ñ π1pS

1q can be realized as the induced
homomorphism φ˚ of a map φ : S1 Ñ S1 .

2Here i denotes the inclusion map, and π has been overloaded as the natural projection map, the ratio of
the circumference of a circle to its diameter, and as the fundamental group when sub-scripted by 1.
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Proof. Let ψ : π1pSq Ñ π1pSq be any homomorphism. ψ is determined by the image of
the generator, ψprγ1sq “ rγks, since π1pSq – Z. Let φ : eiθ ÞÑ eikθ. If γ1psq “ e2πs, then
φ ˝ γ1 “ γk, so φ˚ “ ψ. �

Exercise 14. There are no retractions r : X Ñ A in the following cases:
(a) X “ R3 with A any subspace homeomorphic to S1.
(b) X “ S1 ˆD2 with A its boundary torus S1 ˆ S1.
(c) X “ S1 ˆD2 and A the circle shown in the figure.

(d) X “ D2 _D2 with A its boundary S1 _ S1.
(e) X a disk with two points on its boundary identified and A its boundary S1 _ S1.
(f) X the MÃűbius band and A its boundary circle.

Proof. paq If such a retract existed, there would be a surjective homomorphism π1pR3q –

1 Ñ π1pS
1q – Z.

pbq If such a retract existed, there would be a surjective homomorphism from π1pS
1 ˆ

D2q “– Zˆ t0u – ZÑ π1pS
1 ˆ S1q – Zˆ Z.

pcq The generator of π1pAq maps to a loop in S1 that is homotopic to the trivial loop,
since it laps around and then backwards, so the homomorphism cannot be surjective, and
hence no retract exists.
pdq If such a retract existed, we would have a surjective homomorphism from π1pD

2_D2q –

1 Ñ π1pS
1 _ S1q – Z ˚ Z.

peq X deformation retracts onto S1, so if such a retract existed to S1 _ S1, there would
be a surjective homomorphism from π1pS

1q – ZÑ π1pS
1 _ S1q – Zˆ Z.

pfq X deformation retracts to its central circle. Let γ be a loop around A. Composing
this loop with a loop going around the central circle of X gives a loop that goes around the
central circle twice. Hence the inclusion of A in X induces a homomorphism from Z Ñ 2Z
that restricts to the identity on 2Z, which is impossible, so no such retract exists. �

Exercise 15. If a path-connected, locally path-connected space X has π1pXq finite, then
every map X Ñ S1 is null-homotopic.

Proof. Let f : X Ñ S1 be any map. Since π1pXq is finite, f˚pπ1pXqq is a finite subgroup
of Z and hence trivial. By the Lifting Criterion, there exists a lift rf : X Ñ R of f . R is
contractible, so rf is null-homotopic by some homotopy h. But if p : R Ñ S1 is a covering
map, then p ˝ h is a homotopy from f to a constant map. �

Exercise 16. For a path-connected, locally path-connected, and semilocally simply-
connected space X, call a path-connected covering space rX abelian if it is normal and has
an abelian deck transformation group. X has an abelian covering space that is a covering
space of every other abelian covering space of X, and such a âĂŸuniversalâĂŹ abelian
covering space is unique up to isomorphism. Below is a description of this covering space
explicitly for X “ S1 _ S1 and X “ S1 _ S1 _ S1.
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Proof. The commutator subgroup rπ1pXq, π1pXqs is a normal subgroup, and hence corre-
sponds to a normal, path-connected covering space rX. The group of deck transformations
of rX is also abelian, since the quotient of a group by the commutator subgroup yields that
groups abelianization.

Suppose there exists another covering map q : pX Ñ X with q˚pπ1p pXqq normal and the
quotient π1pXq{q˚pπ1p pXqq abelian. The commutator subgroup of π1pXq lies inside q˚pπ1p pXqq,
so by the lifting criterion, the map p : rX Ñ X lifts to a map rp : rX Ñ pX. But the lift of a
covering map is a covering map, so rX covers pX.

Now suppose actually that pX is also a universal abelian cover. Then both rp and pq are
lifts of the covering maps satisfying ppqrp “ p, so by the uniqueness of lifts, pqrp must be the
identity on rX. A similar argument shows that rppq is the identity on pX, so we must have an
isomorphism between rX and pX.

Concretely, if X “ S1_ S1, then we are looking for a space whose group of deck transfor-
mations is the abelianization of Z ˚Z, which is Z ˆZ. This would be some two dimensional
lattice where horizontal movements correspond to one generator and vertical movements
correspond to another generator. The case for S1 ˆ S1 ˆ S1 should be a similar but three
dimensional lattice. �

Exercise 17. Given a covering space action of a group G on a path-connected, locally
path-connected space X, then each subgroup H ă G determines a composition of covering
spaces X Ñ X{H Ñ X{G. Then

(a) Every path-connected covering space between X and X{G is isomorphic to X{H
for some subgroup H ă G.

(b) Two such covering spaces X{H1 and X{H2 of X{G are isomorphic if and only if
H1 and H2 are conjugate subgroups of G.

(c) The covering space X{H Ñ X{G is normal if and only if H is a normal subgroup
of G, in which case the group of deck transformations of this cover is G{H.

Proof. paq Given a sequence X p1
ÝÑ Y

p2
ÝÑ X{G, let H “ tg P G | p1 ˝ g “ p1u. p1 descends to

a map rp1 : X{H Ñ Y since p1 is constant on equivalence classes. That is, if x1 „H x2, then
hpx1q “ x2 for some h P H. But then p1px1q “ p1hpx1q “ p1px2q. Define a map q : Y Ñ X{H
by qpyq “ rxsH , where x is an element in the fiber of y under p1. This map is well-defined
since if p1pxq “ p1px

1q “ y, then p2p1pxq “ p2p1px
1q, so x „G x1. But then p1 ˝ gpxq “ p1pxq,

so p1 ˝ g “ p1, and hence g P H. So Y and X{H are isomorphic since rp1 is a continuous
bijection preserving the covering.
pbq p ùñ q Given an isomorphism f : X{H1 Ñ X{H2. Since f is an isomorphism, we have

qf “ p where p and q are the covering maps from X{H1 Ñ X{G and X{H2 Ñ X{G. If
rxsH1 ÞÑ rx1sH2 under f , then there exists g such that gx “ x1 since both qf “ p.
p ðù q Let g be such that gH1g

´1 “ H2. Define the map f : rxsH1 ÞÑ rgxsH2 . This map is
well defined since if hpxq “ x1, then there exists h1 such that h1gx “ gx1, namely h1 “ ghg´1.
The map is a bijection since its inverse is given by the map generated by g´1. Given an open
set U in X{H2, can take the inverse image under the natural projection to get an open set
in X. But the taking the inverse isomorphism g´1 and projecting back onto X{H1 gives an
open set since the projection map is open, equivalent to f´1pUq. �
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Exercise 18. The complement of a finite set of points in Rn is simply connected if
n ě 3.

Proof. Let S “ tx1, x2, . . . , xmu be a finite set of points in Rn. Let 2ε “ mini‰j |xi ´ xj|
for i P N such that 0 ă i ă m ` 1. Connect Bεpxiq to Bεpxi`1q by a path for every i P N
such that 0 ă i ă m. Then the complement of S deformation retracts to the boundaries
of each ball together with the paths between them (first deformation retract onto a ball
containing the entire system, then deflate the ball). But this is homotopy equivalent to
Žm

i“1 S
n´1. Each Sn´1 is a CW complex, so π1p

Žm
i“1 S

n´1q “ ˚m
i“1 π1pS

n´1q “ ˚m
i“1 0 “ 0

by Van-Kampen. �

Exercise 19. Let X Ă R3 be the union of n lines through the origin. π1pR3 ´ Xq “
Z˚p2n´1q.

Proof. R3 ´ X deformation retracts onto S2 minus 2n points, where the 2n points are the
intersections of S2 with the lines and the deformation retract is the usual one onto the unit
sphere along rays from the origin. But by the stereographic projection, S2 ´ pS2 X Xq is
homeomorphic to R2 minus 2n´ 1 points. R2 minus 2n´ 1 points has a bouquet of 2n´ 1
circles as a deformation retract, so its fundamental group is Z˚p2n´1q. �

Exercise 20. The fundamental group obtained from two tori by identifying S1ˆtx0u in
one torus to S1 ˆ tx0u in the other torus is pZ ˚ Zq ˆ Z.

Proof. The identification space is

This gives a presentation for the group as G “ xa, b, c � abb´1a´1 “ e, bcc´1b´1 “ ey. We
have the free group on three generators, where one of the generators commutes with both of
the others. This gives pZ ˚ Zq ˆ Z.

The space is just pS1 _ S1q ˆ S1. To see this, place one torus inside the hole of the other,
and identify the inner circle of the outer torus with the outer circle of the inner torus. This
gives π1ppS

1_S1qˆS1q “ π1pS
1_S1qˆπ1pS

1q “ pπ1pS
1q˚π1pS

1qqˆπ1pS
1q “ pZ˚ZqˆZ. �

Exercise 21. π1pR2 ´Q2q is uncountable.

Proof. Consider px0, x0q P R2 ´ Q2. For any px, xq P R2 ´ Q2 with x0 ă x, let γx be the
box path from px0, x0q Ñ px, x0q Ñ px, xq Ñ px0, xq Ñ px0, x0q. For rational r such that
x0 ă r ă x, pr, rq is enclosed by γx, so γx is not trivial. It remains to show γx is not
homotopic to γx1 for x ‰ x1.

Without loss of generality, assume x ă x1. Again there exists rational r with x ă r ă x1.
Consider the inclusion map i : pR2 ´ Q2q ãÑ pR2 ´ tpr, rquq. rγxs is in the kernel of i˚, but
γx1 isn’t, so γx and γx1 are not homotopic. �

Exercise 22. Of the following, only pdq is not a category.
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(a) Objects are finite sets, morphisms are injective maps of sets.
(b) Objects are sets, morphisms are surjective maps of sets.
(c) Objects are abelian groups, morphisms are isomorphisms of abelian groups.
(d) Objects are sets, morphisms are maps of sets which are not surjective.
(e) Objects are topological spaces, morphisms are homeomorphisms.

Proof. paq Composition of injective maps is injective. Composition is associative. The iden-
tity is an injection.
pbq Composition of surjective maps is surjective. Composition is associative. The identity

is a surjection.
pcq Composition of isomorphisms is an isomorphism and composition is associative. The

identity is an isomorphism.
pdq The identity map is surjective, so the identity is not a morphism, so this can’t be a

category.
peq Composition of homeomorphisms is a homeomorphism and composition is associative.

The identity is a homeomorphism. �

Exercise 23. Below are examples of categories with
(a) One object and four morphisms.
(b) Two objects and five morphisms.

Proof. paq We can regard Z4 as a category with one object and four morphisms. The object
is the underlying set, and the morphisms are the maps given by adding by an element.

pbq
A B

�

Exercise 24. The simplest possible category is the empty category 0, consisting of no
objects and no morphisms. Given another category C, there is a unique functor F : 0 Ñ
C, taking nothing nowhere. By definition, colim F is called an initial object of C, if it
exists.

(a) Any two initial objects in a category are uniquely isomorphic.
(b) Below is a description of which of the following categories have initial objects, and

what they are: Set, Gp, Top, Top*, the category of fields with field homomorphisms, the
category of infinite-dimensional vector spaces over a given field with linear maps, the
category of small categories with functors Cat.

(c) Below is a definition of the notion of a terminal object in a category, and a
description of the terminal objects (if they exist) in the previous categories.

Proof. paq Suppose 0 and 01 are initial objects in C. Then there exist unique morphisms
f : 0 Ñ 01 and g : 01 Ñ 0. Composing, we have fg and gf as unique morphisms 01 Ñ 01
and 0 Ñ 0. But the respective identity morphisms are such morphisms, so they must be the
identity morphisms by uniqueness. Hence 0 and 01 are isomorphic, and the isomorphism is
unique.
pbq An initial object is an object such that for every object in the category, there exists

precisely one morphism from the initial object to that object.
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Set has the empty set as its initial object, since theres only one map from the empty set
to any other set.

Gp has the trivial group as its initial object since there’s only one homomorphism from
the trivial group to any other group, sending the identity to the identity.

Top has the empty set as its initial object since theres only one function from the empty
set to any other topological space.

Top˚ has the one point space ˚ as its initial object, since the point must go to the base
point of any other space under any continuous map.

Field has no initial object.
Vec8 has no initial object.
Cat has the empty category as its initial object since theres only one map from the empty

category to any other category taking nothing nowhere.
pcq A terminal object is an object such that for every object in the category, there is a

unique morphism from that object to the terminal object.
Set has any one element set as a terminal object, where the only maps to the one element

set are the maps sending everything to that set.
Gp has the trivial group as its terminal object as well, since the only map to the trivial

group sends everything to the identity.
Top has ˚ as a terminal object since any map to ˚ sends everything to ˚.
Top˚ has the one point space ˚ as its terminal object since any map sends everything to

˚.
Field has no terminal object.
Vec8 has no terminal object.
Cat has the category with one object and one morphism as its terminal object, since any

functor must send everything to that one object.
�

Exercise 25. A natural isomorphism is a natural transformation α, say between two
functors F,G : C Ñ D, such that αX is an isomorphism for each X P ObpCq. Two
categories C and D are equivalent if there exist functors F : C Ñ D and G : D Ñ C
such that there are natural isomorphisms ε : FG Ñ idD and η : idC Ñ GF . Let X be a
topological space and x P X. Regard π1pX, xq, a group, as a category with one element
x. Let Π1pXq be the fundamental groupoid of X: its objects are points of X and its
morphisms from x to y are homotopy classes of paths (with fixed endpoint) from x to y.
There is an evident âĂĲinclusion functorâĂİ J : π1pX, xq Ñ Π1pXq.

If X is path-connected, J is an equivalence of categories.

Proof. Following the proof by Peter May, define the inverse functor F : Π1pXq Ñ π1pX, xq
where F pAq is an object isomorphic to A in π1pX, xq. choosing an isomorphism αA : A Ñ
F pAq and mapping morphisms f : AÑ B as F pfq “ αB ˝f ˝α

´1
A : F pAq Ñ F pBq. Let αA be

the identity if A P π1pX, xq. Then FJ “ id and αA : id Ñ JF is a natural isomorphism. �

Exercise 26. Given two maps of topological spaces f : X Ñ Z and g : Y Ñ Z, let
X ˆZ Y , the pullback or fiber product of f and g, be defined as the set

X ˆZ Y “ tpx, yq P X ˆ Y � fpxq “ gpyqu
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equipped with the subspace topology inherited from the product, together with the âĂĲob-
viousâĂİ maps X ˆZ Y Ñ X and X ˆZ Y Ñ Y formed by composing inclusion and
projection onto one of the factors. The pullback is a limit in Top over the diagram
X Ñ Z Ð Y .

Proof. Let T, x, y be a cone over the same diagram. It suffices to show there exists a morphism
u from T to the pullback such that the following diagram commutes.

T

X ˆZ Y X

Y Z

x

y

u

p

q f

g

Let uptq “ pxptq, yptqq. This is well-defined since gpyptqq “ fpxptqq, so uptq P X ˆZ Y for
all t P T . u is continuous since the coordinate functions are continuous and the pullback
has the subspace topology inherited from the product topology. More explicitly,the product
topology has rectangular open sets as a basis. The preimage of any basis element under u
is the intersection of the preimages under x and y, which is open as it is the intersection of
two open sets. �

Exercise 27. Given two maps of topological spaces f : Z Ñ X and g : Z Ñ Y , the
pushout of f and g is defined as the quotient space

X
ž

Z

Y “ X
ž

Y { „

where „ is the equivalence relation generated by fpzq „ gpzq for all z P Z, together with
the “obvious” maps X Ñ X

š

Z Y and Y Ñ X
š

Z Y formed by composing inclusion
into X

š

Y and the quotient map. The pushout is a colimit in Top over the diagram
X Ð Z Ñ Y .

Proof. Let T, j1, j2 be a cocone over the same diagram. It suffices to show there exists a
morphism u from the pushout to T such that the following diagram commutes.

T

X
š

Z Y Y

X Z

u

i2

j2

i1
j1 g

f

Let upwq “
#

j1pwq w P i1pXq

j2pwq w P i2pY q
. Both j1 and j2 are continuous and agree on i1pXqXi2pY q as

j1 ˝f “ j2 ˝g. Both i1pXq and i2pY q are closed, so by the gluing lemma, u is continuous. �
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Exercise 28. The mapping cylinder Mf of a map f : X Ñ Y is a colimit over the
diagram X ˆ I Ð X Ñ Y , where X Ñ X ˆ I is the natural map identifying X with
X ˆ t0u.
Proof. Mf is the pushout X ˆ I

š

X Y with the maps f : X Ñ Y and i : X Ñ X ˆ I
identifying X to X ˆt0u, and hence by the previous proposition, it is a colimit over the
diagram X ˆ I Ð X Ñ Y . �

Exercise 29. All CW complexes with two 0-cells and two 1-cells up to
(a) homeomorphism are in one of the four classes described below.
(b) homotopy equivalence are in one of the three classes described below.

Proof. paq We have two maps f : ta, bu Ñ tx1, x2u and g : ta1, b1u Ñ tx1, x2u, giving 16 pos-
sible constructions. But up to relabeling of nodes and changing directions of edges (homeo-
morphism), we only have

x1 x2 x1 x2 x1 x2 x1 x2

pbq The second box from the left is homotopy equivalent to the last box from the left by
a contraction of the x2 node to the x1 node.

�

Exercise 30. (a) The ‘square lattice’ is a CW complex homeomorphic to R2.
(b) The following diagram is a CW complex homeomorphic to a 2-disk with two smaller

open 2-disks removed.

Proof. paq Let the 0-skeleton be ZˆZ. To construct the 1-skeleton, connect nodes a distance
one apart to one-another by the path of distance one. To construct the 2-skeleton, fill in
each square pi, jq Ñ pi` 1, jq Ñ pi` 1, j ` 1q Ñ pi, j ` 1q Ñ pi, jq.
pbq The one skeleton is given by

11



x1

x2

x3

x4

x5

x6

Gluing a disk to the large left region and a disk to the large right region gives the desired
disk with two smaller open disks removed. �

Exercise 31. RP n´txu, where x P RP n is any point, is homotopy equivalent to RP n´1.

Proof. RP n is Sn{pv „ ´vq, but this is equivalent to Dn with antipodes on BDn identified.
BDn with antipodes identified is just RP n´1, so the real projective space of dimension n can
be constructed by Rn´1 Ť

f D
n where the attaching map f : Sn´1 Ñ RP n´1 is the quotient

projection. If the point to be removed lies on the boundary of Dn, use a homeomorphism
to move it to the interior. Then Dn minus an interior point deformation retracts onto
its boundary, so RP n minus a point deformation retracts to RP n´1, and hence they are
homotopy equivalent. �

Exercise 32. (a) The mapping cylinder of every map f : S1 Ñ S1 is a CW complex.
(b) The follwoing is a 2 dimensional CW complex that contains both an annulus S1ˆI

and a MÃűbius band as deformation retracts.

Proof. paq Mf in this instance can be constructed explicitly as a CW complex. Let the
0-skeleton be two points, θ0 and fpθ0q. Attach a 1-cell to θ0 and a 1-cell to fpθ0q, forming
a loop at each point. Attach a 1-cell connecting θ0 to fpθ0q. Attach a 2-cell along the path
going along the loop at θ0, along the 1-cell joining θ0 to fpθ0q, along the image of the loop
at s0 under f , then back along the path joining the 0-cells.
pbq Place CW structures on the annulus and the MÃűbius band, and identify the central

circle of the MÃűbius band with S1ˆt0u. But then this CW complex retracts onto both the
annulus and the MÃűbius band, by using the retraction of the MÃűbius band to its central
circle and the retract of the annulus to S1 ˆ t0u, respectively. �
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Exercise 33. Below is a description of which of the following inclusions are cofibrations.
(a) txu ãÑ Sn, where x P Sn is any point.
(b) p0, 1s ãÑ r0, 1s.
(c) Z ãÑ R.
(d) Q ãÑ R.
(e) X ãÑ CX, where CX “ pX ˆ Iq{pX ˆ t0uq is the cone of X and the inclusion

sends X Ñ X ˆ t1u.

Proof. For the following, consider the diagram

Y X

Y I A

rf0

rf

p0 i

f

A cofibration exists if and only if there is a retraction X ˆ I to A ˆ I Y X ˆ t0u. But if
A Ă X, then the cofibration, if it exists, must be the inclusion, since a cofibration is injective
and is a homeomorphism onto its image.
paq This is a cofibration since there exists a retraction from Snˆ I to pIˆtxuYpXˆt0uq.
pbq A cofibration cannot exist since there is no retraction from I2 to pp0, 1sˆIqYpIˆt0uq.
pcq This is a cofibration since there is a retraction from Rˆ I to pZˆ Iq Y pRˆ t0uq.
pdq A cofibration cannot exist since there is nor etraction from RˆI to pQˆIqYpRˆt0uq.
peq This is a cofibration since there exists a retract from CXˆI to pXˆIqYpCXˆt0uq. �

Exercise 34. If f : X Ñ Y is a (co)fibration, and g : Y Ñ Z is a (co)fibration, then
g ˝ f : X Ñ Z is a (co)fibration.

Proof. Let W be any topological space, h : W ˆ I Ñ Z be any continuous map, i be the
map sending W to W ˆ t0u, and rh0 be such that h ˝ i “ g ˝ f ˝ rh0. g ˝ f is a fibration iff
there exists a function u such that Diagram A commutes. Well, g is a fibration, so using
f ˝ rh0, there exists a lift ph such that Diagram B commutes. f is another fibration, so there
must exist a lift rh such that rh ˝ i “ rh0. Then letting u “ rh gives commutative Diagram C,
so g ˝ f is a fibration.

Diagram A

W X

Y

W ˆ I Z

i

rh0

f

g

h

u

Diagram B

W X

Y

W ˆ I Z

i

rh0

f

g

h

u

ph

Diagram C

W X

Y

W ˆ I Z

i

rh0

f

g

h

rh

ph

Reversing arrows in the diagrams gives a proof that cofibrations are closed under composition.
�
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Exercise 35. If ˚ is the one point space, then any map f : X Ñ ˚ is a fibration.

Proof. Let Z be any topological space, i be the map sending Z to Z ˆ t0u, and let h and rh0

be continuous maps such that h ˝ i “ f ˝ rh0. Then f is a fibration iff there exists a map u
such that the following diagram commutes

Z X

Z ˆ I ˚

rh0

i f

h

u

Let upz, tq “ rh0pzq. Then u ˝ i “ rh0, and f ˝ u “ h since any map X Ñ ˚ is constant, so the
diagram commutes. �

Exercise 36. A map p : E Ñ B is a fibration iff the map π : EI Ñ Ep, πpγq “ pγp0q, pγq,
has a section, that is, a map s : Ep Ñ EI such that πs “ 1.

Proof. p ùñ q Consider the following diagram

Ep E

Ep ˆ I B

pe,γqÞÑe

Epˆt0u p
s

pe,γ,tqÞÑγptq

The diagram commutes since γp0q “ ppeq, so the lift s exists since p is a fibration. We have
πpspe, γqq “ pspe, γqp0q, pspe, γqq. But by the diagram, spe, γqp0q “ e and pspe, γq “ γ, so
πs “ 1.
p ðù q It suffices to show there exists rf making

X E

X ˆ I B

rf0

i p

f

rf

commute. Since πs “ 1, πpspe, γqq “ pspe, γqp0q, pspe, γqq “ pe, γq so spe, γqp0q “ e and
ppsqpe, γq “ γ. Let rfpx, tq “ psp rf0pxq, ftpxqqqptq. This is a valid lift since rfpx, tq “

psp rf0pxq, f0pxqqqp0q “ rf0pxq as spe, γqp0q “ e. It is continuous since s, rf0 and ft are con-
tinuous. The diagram commutes since p rf “ ppsp rf0pxq, ftpxqqptqq “ fpx, tq as ppsqpe, γq “ γ.

�

Exercise 37. A linear projection of a 2-simplex onto one of its edges is a fibration but
not a fiber bundle.

Proof. Let T be any 2 simplex in R2. Project onto a side where both incident angles are
less than π{2, which must exist since otherwise the angles would sum to more than π. Then
the fiber of an endpoint belonging to that edge is a single point, while the fiber of any point
that’s not an endpoint is a line, so the fibers are not homeomorphic, and thus the projection
is not a fiber bundle.
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It remains to show the projection is a fibration. We have π : T I Ñ Tp as in the previous
proposition given by πpγq “ pγp0q, pγq where p : T Ñ Te is the projection onto the edge. It
suffices to construct a section such that πs “ 1. The section is given explicitly by using a
path that is mimics the path on the edge, except it slides along edges if the path it tries to
mimic goes outside the triangle. �

Exercise 38. If X and Y are pointed topological spaces, then xΣX, Y y “ xX,ΩY y.

Proof. Let φ : F pX,ΩY q Ñ F pΣX, Y q be given by φphqpx, sq “ hpxqpsq. φ is well-defined
since φphqpx, s0q “ hpxqps0q “ y0 and φphqpx0, sq “ hpx0qpsq “ y0, where y0 denotes the loop
staying put at y0 for all s P S1. Let φ´1pgqpxqpsq “ gpx, sq. Then we have φpφ´1pgqqpx, sq “
φ´1pgqpxqpsq “ gpx, sq and φ´1pφphqqpxqpsq “ φphqpx, sq “ hpx, sq. Hence φ is a bijection.
But φ is a restriction of the usual currying function, and since S1 is locally compact Hausdorff,
so the currying function is continuous, and in particular φ. The inverse is continuous since
it is the un-currying function.

It remains to show that φ descends on based homotopy equivalence classes. But if H is a
homotopy between h, h1 P F pX,ΩY q, then φ ˝ H is a homotopy between φh and φh1. The
composition is a valid homotopy since φ and H are continuous. �

Exercise 39. Suppose that X is a CW complex that is an increasing union of subcom-
plexes X1 Ă X2 Ă . . . such that each inclusion Xj ãÑ Xj`1 is nullhomotopic. Then X
is contractible.

Proof. Each pair pX,Xjq satisfies the homotopy extension property since the Xj are sub-
complexes, and thus each null-homotopy hj : Xj ˆ I Ñ Xj`1 extends to a homotopy
rhj : X ˆ I Ñ X. As in the proof of inclusion of subcomplexes being cofibrations, de-
fine h : X ˆ I Ñ X to be the composition of all of the homotopy extensions. This gives a
contraction of X. �

Exercise 40. Given a pointed space pX, x0q, view
ř

X as X ˆ I{pX ˆ t0u YX ˆ t1u Y
tx0u ˆ Iq. Then the inclusion i : X ãÑ

ř

X given by x ÞÑ px, 1{2q is nullhomotopic.

Proof. Let hpx, tq “ px, 1
2p1` tqq. Then hpx, 0q “ px, 1

2q and hpx, 1q “ px, 1q. But under the
equivalence, all points px, 1q are identified to a single point. �

Exercise 41. If X is a pointed CW complex, then the infinite suspension
Σ8pXq “

ď

jě1
Σj
pXq

with inclusions as in the previous proposition is contractible. Since Σ8 is a functor,
this gives a way of making arbitrary CW complexes contractible. In particular, S8 is
contractible.

Proof. Σ8pXq is an increasing union of subcomplexes X Ă ΣX Ă Σ2X Ă . . . . Each inclusion
i : ΣjX ãÑ Σj`1 is null-homotopic by Proposition 7, so by Proposition 6, the infinite
suspension is contractible. �

Exercise 42. If a diagram
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A B C D E

A1 B1 C 1 D1 E 1

f

rj rl

g h

k rm

i

rn

o p q r

of homomorphisms of abelian groups with exact rows commutes, and all vertical maps
except the middle are isomorphisms, then the middle map is injective.

Proof. Let 0 denote the identity element in a group. Let c be an element in the kernel
of k. Any homomorphism maps 0 ÞÑ 0, so qpkpcqq “ 0. Since the diagram commutes,
qpkpcqq “ rmphpcqq “ 0. But rm is an isomorphism, so hpcq “ 0. By exactness of the first row,
there exists an element b P B such that gpbq “ c. Since the diagram commutes, pprlpbqq “
kpgpbqq “ kpcq “ 0. By exactness of the second row, there exists a1 such that opa1q “ rlpbq.
rj is an isomorphism, so there exists a P A such that rjpaq “ a1. The diagram commutes, so
rlfpaqq “ oprjpaqq “ opa1q “ rlpbq. Since rj is injective, fpaq “ b. But gpfpaqq “ gpbq “ c and
gpfpaqq “ 0 by exactness of the diagram, so ker k “ 0 and hence k is injective.

Assumptions: maps are homomorphisms, rows are exact, commutativity of the diagram,
and rj and rm are isomorphisms. �

Exercise 43. If p : pE, e0q Ñ pB, b0q is a based fibration of based spaces, then the
inclusion φ : F “ p´1pbq Ñ Np is a based homotopy equivalence.

Proof. Explicitly, Np “ tpe, γq P E ˆ BI : γp0q “ ppeq, γp1q “ b0u. Let h : Np ˆ I Ñ B be
given by htpe, γq “ γptq. Let rh0 : Np Ñ E be given by rh0pe, γq “ e. By the homotopy lifting
property, there exists a lift rh : Np ˆ I Ñ E such that

Np E

Np ˆ I B

rh0

i p

h

rh

commutes. Let H : Np ˆ I Ñ Np be given by Htpe, γq “ prhtpe, γq, γ|rt,1sq. Note that Ht is
fiber preserving since the endpoints of the paths are unchanged.

The map e ÞÑ pe, cppeqq is a homeomorphism between E and its image in Np, call it E 1. Note
that H1pe, γq “ prh1pe, γq, cγp1qq, and since by commutativity of the diagram, pprh1pe, γqq “
h1pγq “ γp1q, H1pNpq Ă E 1 – E. We can thus regard H1 as a map Np Ñ E. Then φH1 “ H1.
Additionally, we have that HtpEq Ă E 1 – E for all t.

Note that H0 “ id, so that by Ht, we have that φH1 is based homotopy equivalent to the
identity. Additionally, H1φ is based homotopy equivalent to the identity by Ht|E, so φ is a
based homotopy equivalence of fibers. �

Exercise 44. Let f : X Ñ Y be a map of pointed topological spaces and let π : Nf Ñ X
be the projection. Then π is always a fibration, and the natural inclusion i : ΩY Ñ Nπ

is a homotopy equivalence.

Proof. Let
16



Z Nf

Z ˆ I X

rh0

i π

h

rh

be a commutative diagram without rh. π is a fibration if and only if there exists rh such that
the diagram still commutes.

If such a lift exists, since π ˝ rh “ h, the first coordinate of the lift must be rhtpzq1 “ htpzq.
To be well defined, the second coordinate of the lift must be a path from fphtpzqq to y0,
where y0 is the basepoint of Y . Interpret and reparametrize htpzq as a path from h0pzq to
htpzq. Then, a path from fphtpzqq to fph0pzqq is given by γzptq “ fpphtpzqq, where phtpzq
denotes the inverse path to htpzq. Concatenate this path with the second coordinate of the
initial lift rh0pzq2. This is well-defined since rh0pzq2 must be a path from fprh0pzq1q to y0 be
definition of Nf , and by commutativity of the diagram, h0pzq “ πprh0pzqq, so h0pzq “ rh0pzq1.
Hence the lift rh exists as is given explicitly by rhtpzq “ phtpzq,rh0pzq2 ˚ γzptqq. �

Exercise 45. For n P NY t8u, πipSnq – πipRP nq for all i ą 1.

Proof. Pick arbitrary basepoints s0 P S
n and p0 P RP n. Let π : pSn, s0q Ñ pRP n, p0q be the

basepoint preserving natural projection identifying antipodal points. π is a covering map by
Proposition 1.40 in Hatcher, so therefore it is also a fibration. Identify S0 as π´1ptp0uq

with an arbitrary basepoint s10. Let i : S0 Ñ Sn be the basepoint preserving inclusion. Then
we have the long exact sequence of homotopy groups

. . .Ñ πipS
0, s10q Ñ πipS

n, s0q Ñ πipRP n, p0q Ñ πi´1pS
0, s10q Ñ . . .

which follows from the long exact sequence of a fibration. For i ą 1, πipS0, s10q is trivial, so
the short exact sequence

0 f
ÝÑ πipS

n, s0q
g
ÝÑ πipRP n, p0q

h
ÝÑ 0

is valid for all i ą 1. g is injective since ker g “ fpt0uq “ 0, and it is surjective since its image
is kerh. Therefore, πipSn, s0q – πipRP n, p0q. The proposition follows since both spaces are
path-connected.

This proposition holds also for S8 and RP8 since S8 is a double cover of RP8. �

Exercise 46. Let m,n P Zą1 Y t8u and let X “ RPm ˆ Sn and Y “ RP n ˆ Sm (pick
basepoints arbitrarily). Then πipXq – πipY q for all i ě 0.

Proof. Real projective spaces and spheres of dimension greater than one are path-connected,
so by Proposition 4.2 in Hatcher, πipRPmˆSnq – πipRPmqˆπipS

nq and πipRP nˆSmq “
πipRP nq ˆ πipS

mq.
The case i “ 0 follows since both spaces are path-connected.
By 1B.3 in Hatcher, π1pRP nq – Z{2Z for n P Zą1Yt8u. Hence, for i “ 1, π1pRPmˆSnq –

π1pRPmqˆπ1pS
nq – Z{2Zˆ0 – Z{2Z and π1pRP nˆSmq “ π1pRP nqˆπipS

mq – Z{2Zˆ0 –
Z{2Z.

The case i ą 1 follows by the previous proposition. �
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Exercise 47. Let
. . .Ñ Cn`1

gn`1
ÝÝÝÑ An

in
ÝÑ Bn

fn
ÝÑ Cn

gn
ÝÑ An´1

in´1
ÝÝÑ Bn´1 Ñ . . .

be a long exact sequence of abelian groups, with every third arrow in injective. Then the
short sequence

0 g
ÝÑ An

in
ÝÑ Bn

fn
ÝÑ Cn

h
ÝÑ 0

is exact.

Proof. in is an injective homomorphism, so ker in “ 0 “ gpt0uq. im in “ ker fn since
the long exact sequence is exact. Additionally, the exactness of the long sequence gives
im gn “ ker in´1, which is trivial since in´1 is injective. Then im gn “ 0 gives ker gn “ Cn.
By exactness of the long sequence, im fn “ ker gn “ Cn. Hence im f “ Cn “ kerh, so the
short sequence is exact. �

Exercise 48. If
0 e
ÝÑ A

f
ÝÑ B

h
ÝÑ C

j
ÝÑ 0

is a short exact sequence of abelian groups, and there exists a map g : B Ñ A such that
gf “ idA, then B – A‘ C.

Proof. Let φ : B Ñ A ‘ C be given by φpbq “ pgpbq, hpbqq. φ is a homomorphism since its
coordinate functions are homomorphisms.

Suppose b P kerφ. Then gpbq “ 0 and hpbq “ 0. b P kerh, hence there exists a P A
such that fpaq “ b by exactness of the sequence. This gives that gpfpaqq “ gpbq “ 0. But
gf “ idA, so gpfpaqq “ b, hence kerφ is trivial. Therefore, φ is injective.

Consider any pa, cq P A ‘ C. h is surjective by exactness, so there exists b such that
hpbq “ c. Let b1 “ fpaq ` b´ fpgpbqq. Then
φpb1q “ pgpfpaq ` b´ fpgpbqqq, hpfpaq ` b´ fpgpbqqqq

“ pgpfpaqq ` gpbq ´ gpfpgpbqqq, hpfpaqq ` hpbq ´ hpfpgpbqqqq g, h are homomorphisms
“ pa` gpbq ´ gpbq, hpfpaqq ` hpbq ´ hpfpgpbqqqq gf “ idA
“ pa, hpbqq “ pa, cq im f “ kerh

φ is a bijective homomorphism, so it is an isomorphism, and therefore B – A‘ C. �

Exercise 49. If pX,Aq is a pointed pair such that there exists a retraction r : X Ñ A,
then πipXq – πipAq ‘ πipX,Aq for all i ě 2.

Proof. Consider the relative homotopy sequence of pairs derived from the Puppe Sequence
given by

. . .Ñ πipAq Ñ πipXq Ñ πipX,Aq Ñ πi´1pAq Ñ . . .

Since there is a retraction X Ñ A, the map πipAq Ñ πipXq is injective for all i ě 2. By
Proposition 6, the short sequence

0 Ñ πipAq Ñ πipXq Ñ πipX,Aq Ñ 0
is exact for all i ě 2. By definition of retract, the retract composed with the inclusion is the
identity map on A. But then by functoriality, the composition of the induced maps is the
identity on the homotopy groups. That is, pr ˝ iq “ id implies pr ˝ iq˚ “ r˚ ˝ i˚ “ id˚. Thus,
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by Proposition 7, the short exact sequence splits, and hence πipXq – πipAq ‘ πipX,Aq for
all i ě 2. �

Exercise 50. An n-dimensional, n-connected CW complex is contractible.

Proof. Let X be an n-dimensional, n-connected CW complex. By CW approximation, there
exists ΓX such that γ : X Ñ ΓX is a weak-homotopy equivalence and ΓX has a unique
0-cell and no q-cells for 0 ă q ď n. By Whitehead’s Theorem, this weak-equivalence is a
homotopy equivalence. By cellular approximation, γ is homotopy equivalent to a cellular
map. But then this map is a homotopy equivalence from X to a point, since X has no q-cells
for q ą n and each q-cell for q ď n gets mapped to the unique 0-cell of ΓX. Hence X is
contractible. �

Exercise 51. A CW complex retracts onto any contractible subcomplex.

Proof. Let ht : AÑ A be a homotopy such that h0paq “ a0 for some a0 P A and let h1paq “ a.
Let H0 : X Ñ A be given by H0pxq “ a0. Note H0|A “ h0. Since any CW pair satisfies the
homotopy extension property, there exists an extension Ht : X Ñ A such that Ht|A “ ht.
But then H1 gives the desired retract, since H1 : X Ñ A and H1|A “ h1 “ idA. �

Lemma 2. Let Z be a CW approximation of a space X. If there exists a weak homotopy
equivalence X Ñ Y or Y Ñ X, then Z is a CW approximation of Y .

Proof. Consider first the case where there exists a weak homotopy equivalence g : X Ñ Y .
Let h : Z Ñ X be the given weak homotopy equivalence. Then g ˝ h : Z Ñ Y is a weak
homotopy equivalence from Z to Y , so Z is a CW approximation for Y .

In the latter case, there exists a weak homotopy equivalence f : Y Ñ X. Let W be a CW
approximation of Y and let w : W Ñ Y be the corresponding weak homotopy equivalence.
By the previous argument using composition, W is a CW approximation of X. But then
by Corollary 4.19 in Hatcher, there is a homotopy equivalence k : Z Ñ W . Hence,
w ˝ k : Z Ñ Y is a weak homotopy equivalence, hence Z is a CW approximation for Y . �

Exercise 52. Consider the equivalence relation »w generated by weak homotopy equiv-
alence: X »w Y if there are spaces X “ X1, X2, . . . , Xn “ Y with weak homotopy
equivalences Xi Ñ Xi`1 or Xi Ð Xi`1 for each i. X »w Y iff X and Y have a common
CW approximation.

Proof. ( ùñ ) Let Z be a CW approximation for X. Then by n-fold application of Lemma
1, Z is a CW approximation for Y , and hence they have a common CW approximation.

( ðù ) If Z is a CW approximation of X and Y , then we have the sequence X Ð Z Ñ Y
where both arrows are weak homotopy equivalences since Z is a CW approximation. But
then this is the criterion for X »w Y . �

Exercise 53. There is no retraction RP n Ñ RP k if n ą k ą 0.

Proof. Suppose there is a retraction r : RP n Ñ RP k for n ą k ą 0. Then there must be a
surjection πkpRP nq Ñ πkpRP kq. If k ą 1, then πkpRP nq “ 0 and πkpRP kq “ Z. But this
gives a contradiction since there is no surjection 0 Ñ Z. If k “ 1, then πkpRP nq “ Z{2Z
and πkpRP kq “ Z, and again there is a contradiction since there is no surjection Z{2ZÑ Z.
Thus no retraction exists. �
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Exercise 54. Given a sequence of CW complexes KpGn, nq, n “ 1, 2, . . . , let Xn be the
CW complex formed by the product of the first n of these KpGn, nq’s. Via the inclusions
Xn´1 Ă Xn coming from regarding Xn´1 as the subcomplex of Xn with the n-th coordinate
equal to a basepoint 0-cell of KpGn, nq, we can then form the union of all the Xn’s, a
CW complex X.
πnpXq – Gn for all n.

Proof. The projection map X to a factor is a fiber bundle with canonical sections, and hence
we have the long sequence of homotopy groups. But because of the section, each short exact
sequence splits to give that πnpXq – Gn ˆ 0ˆ 0 . . . – Gn. �

Exercise 55. For a fiber bundle F Ñ E Ñ B such that the inclusion F ãÑ E is
homotopic to a constant map, the long exact sequence of homotopy groups breaks up into
split short exact sequences giving isomoprhisms πnpBq – πnpEq‘πn´1pF q. In particular,
for the Hopf bundles S3 Ñ S7 Ñ S4 and S7 Ñ S15 Ñ S8, this yields isomorphisms

πnpS
4
q – πnpS

7
q ‘ πn´1pS

3
q

πnpS
8
q – πnpS

15
q ‘ πn´1pS

7
q

Thus π7pS
4q and π15pS

8q have Z summands.

Proof. Since F ãÑ E is homotopic to a constant map, the induced map πnpF q Ñ πnpEq is
trivial for all n. By exactness, the kernel of the map πnpEq Ñ πnpBq is trivial, and thus the
map is injective. Therefore, the sequence

0 Ñ πnpEq Ñ πnpBq Ñ πn´1pF q Ñ 0
is exact. To see that the sequence splits, we construct a map πi´1pF q Ñ πipBq.

Since F ãÑ E is homotopic to a constant map, each map Si´1 Ñ F bounds a disk Di Ñ E.
Composing this disk map with the projection gives a map which sends to boundary of the
disk to a single point, so it represents a map Si Ñ B, and gives an element of πipBq.
Since this map is a well-defined homomorphism, the short exact sequence splits by and
πnpBq – πnpEq ‘ πn´1pF q. �

Exercise 56. If Sk Ñ Sm Ñ Sn is a fiber bundle, then k “ n´ 1 and m “ 2n´ 1.

Proof. For each point p P Sn, there exists an open neighborhood U such that U ˆ Sk –
π´1pUq. U ˆ Sk is an open subset of Sn ˆ Sk, and π´1pUq is an open subset of Sm, so by
Theorem 2.26 in Hatcher, m “ n` k. We proceed by cases on n.

If n “ 0, then m “ k by m “ n ` k, and the fiber bundle has the form Sk Ñ Sk Ñ S0.
The map Sk Ñ S0 has to be surjective, and thus Sk must be disconnected, so k “ 0. But
then the fiber bundle is S0 Ñ S0 Ñ S0, which is impossible, since a surjective map S0 Ñ S0

must be a bijection as the spaces have the same finite cardinality, and hence cannot have
fiber S0.

If n “ 1, then the fiber bundle has the form Sk´1 Ñ Sk Ñ S1 by m “ n ` k. The exact
sub-sequence π1pS

kq Ñ π1pS
1q Ñ π0pS

k´1q implies k “ 1 since otherwise there would exist
an exact sequence 0 Ñ ZÑ 0. So then the fiber bundle is of the form S0 Ñ S1 Ñ S1, which
agrees with k “ n´ 1 and m “ 2n´ 1.

If n ą 1 then k ă m since m “ n ` k, and hence πkpS
mq “ 0. Therefore any map

Sk Ñ Sm is null-homotopic, and by Proposition 6, πnpSnq – πnpS
mq ‘ πn´1pS

kq. But
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n ă m, so πnpSmq “ 0 and hence πnpSnq – πn´1pS
kq – Z. In particular, πn´1pS

kq is non-
trivial, so n´ 1 ě k. Additionally, by the exactness of πk`1pS

nq Ñ πkpS
kq Ñ πk´1pS

mq – 0,
πk`1pS

nq Ñ πkpS
kq – Z is surjective, so πk`1pS

nq cannot be trivial, and thus k ě n ´ 1.
Thus, k “ n´ 1. Finally, since m “ n` k, m “ 2n´ 1. �

Exercise 57. Let X be the triangular parachute obtained from ∆2 by identifying its three
vertices to a single point. Its homology groups are H0pXq – Z, H1pXq – Z2, with higher
homology groups being trivial.

Proof. Since the space is path-connected, we have that H0pXq – Z.
H1pXq “ kerpB1q{ impB2q. Since all vertices are identified, B1 is the trivial map, and

hence its kernel is xa, b, cy. We still have impB2q “ ´a ` b ´ c, and hence kerpB1q{ impB2q “

xa, b, cy{x´a` b´ cy – Z2.
Since impB3q “ kerpB2q “ 0, we have that H2pXq – 0. The higher homology groups vanish

since the boundary maps for all higher simplices are trivial. �

Exercise 58. Let X be the ∆ complex X obtained from ∆n by identifying all faces of
the same dimension. Thus X has a single k-simplex for each k ď n. The homology
groups of X all vanish except H0pXq – Z and HnpXq if n is even.

Proof. The case H0pXq follows since the space is path-connected. For 0 ă i ă n, we have

Biθi “
ři
j“0p´1qjθ|i-face “

#

θi´1 i even
0 i odd

. Hence, HipXq –

#

Ci{Ci – 0 i even
0 i odd

. Lastly,

HnpXq “ kerpBnq{ impBn`1q – kerpBnq. Therefore, HnpXq – Z if n is even and trivial
otherwise. �

Exercise 59. If A is a retract of X, then the map HnpAq Ñ HnpXq induced by the
inclusion is injective.

Proof. Let x P ker i˚. Then pr ˝ iq˚pxq “ pr˚ ˝ i˚qpxq “ 0. Hence, ker i˚ Ă kerpr ˝ iq˚ “
ker id˚ “ 0, so ker i˚ “ 0, and hence i˚ is injective. �

Exercise 60. A morphism f : A Ñ B in Ch(Ab) is an isomorphism if and only if
each fn : An Ñ Bn is an isomorphism of groups.

Proof. ( ùñ ) If f is an isomorphism, then f |An is an isomorphism onto its image Bn since
the restriction of the inverse of f is the inverse of the restriction of f .

( ðù ) We have the following diagram

. . . Ai Ai`1 . . .

. . . Bi Bi`1 . . .

fi

Bi

fi`1

Bi`1

B1i
B1i`1

Let gi be the inverse of fi. It suffices to show that the collection of all gi is a morphism. But
this follows since fi`1Bi “ B

1
ifi by definition of morphism, and by composition on the left by

gi`1 and on the right by gi, we have Bigi “ gi`1B
1
i, and hence the inverse is a morphism so f

is an isomorphism. �
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Exercise 61. If A is a complex with all boundary maps equal to the zero map, then
HnpAq – An.

Proof. We have HnpAq “ kerpBnq{ impBn`1q – An{0 – An. �

Exercise 62. Given two morphisms f, g : AÑ B in Ch(Ab), let the sum f`g : AÑ B
be given by pf ` gqn “ fn ` gn. Hn : Ch(Ab) Ñ Ab is additive: Hnpf ` gq “
Hnpfq `Hnpgq.

Proof. Hnpf ` gq “ kerppf ` gqnq{ imppf ` gqn`1q “ kerpfn` gnq{ impfn`1` gn`1q “ Hnpfq`
Hnpgq. �

Exercise 63. A1 is a subcomplex of a complex A if each A1n is a subgroup of An and
each boundary map on A1 is the restriction of the corresponding boundary map on A.

If f : AÑ B is a morphism of complexes, then there is an isomorphism of complexes
A{ kerpfq – impfq.

Proof. By the first isomorphism theorem on groups, we have An{ kerpfnq – impfnq. But the
isomoprhism is the quotient map of f , so Bg “ gB, and hence by Proposition 4, we have
that there is an isomorphism in Ch(Ab) of A{ kerpfq – impfq. �

Exercise 64. (a) Compute the homology groups HnpX,Aq when X is S2 or S1ˆS1 and
A is a finite set of points in X.

(b) Compute the groups HnpX,Aq and HnpX,Bq for X a closed, orientable surface of
genus two with A and B the circles shown. [ What are X/A and X/B. ]

Proof. paq A is a finite subset of a metric space, hence closed in particular. If A is empty,
then the relative homology groups HnpX,Aq reduce to the homology groups HnpXq, which
have already been computed in Hatcher. Otherwise, A is nonempty with cardinality k P N.
Let U be the open set given by unions of disjoint open balls centered at each point in A.
Then U deformation retracts onto A by contracting each ball to its center. Thus pX,Aq is
a good pair.
A has k-path components, so H0pAq “ Zk. Furthermore, A contains no maps of higher

dimensional simplices, hence HipAq – 0 for i ą 0. X is path-connected in both cases, so
X{A is path-connected. Thus, H0pX,Aq – rH0pX{Aq – 0.

Consider the long exact sequence
. . .Ñ H1pAq Ñ H1pXq Ñ H1pX,Aq Ñ H0pAq Ñ H0pXq Ñ H0pX,Aq Ñ 0

If X “ S2, then H1pS
2q – 0, so we have the short exact sequence

0 Ñ H1pX,Aq Ñ Zk Ñ ZÑ 0
Since the map AÑ X is the inclusion, the induced map has a left inverse, and the sequence
splits, so H1pX,Aq – Zk´1.

If X “ S1 ˆ S1, then we have the exact sequence

0 Ñ Z2
Ñ H1pX,Aq

B
ÝÑ Zk Ñ ZÑ 0
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By exactness, we have that ker B – Z2 and im B – Zk´1. SinceH1pX,Aq is a finitely generated
abelian group with no torsion, it is determined by rank alone. Since its rank has to be k`1,
we have that H1pX,Aq – Zk`1.

In both cases, we have that H2pX,Aq – Z.
pbq X{A and X{B are both path-connected, so H0pX,Aq – H0pX,Bq – rH0pX{Aq – 0.

H1pT
2 _ T 2q – Z2 ‘ Z2 – Z4 by Corollary 2.25 in Hatcher. X{A is homotopy equivalent

to the wedge product T 2 _ T 2, so H1pX,Aq – rH1pX{Aq – rH1pT
2 _ T 2q – Z4. Similarly,

H2pX,Aq – Z2. X{B is homotopy equivalent to the wedge product of a torus and a circle,
so H1pX,Bq – rH1pX{Bq – rH1pT

2 _ S1q – Z2 ‘ Z – Z3. Similarly, H2pX,Bq – Z. �

Exercise 65. For the subspace Q Ă R, the relative homology group H1pR,Qq is free
abelian and find a basis.

Proof. Consider the exact sequence

H1pRq Ñ H1pR,Qq B
ÝÑ H0pQq Ñ H0pRq

R is contractible, so H1pRq vanishes and H0pRq – Z. This gives

0 Ñ H1pR,Qq B
ÝÑ H0pQq Ñ Z

By exactness, H1pR,Qq – ker B. H0pQq is an infinite product of the integers, since Q has a
path-component for each point in Q. Hence

B :
à

qPQ
Zq Ñ Z

where each Zq is a copy of Z. But the kernel of this map, for some basepoint q0 P Q, has
basis eq ´ eq0 . Hence, since a subgroup of a free abelian group is free abelian, we have that
H1pR,Qq is free abelian. �

Exercise 66. rHnpXq – rHn`1pSXq for all n, where SX is the suspension of X. More
generally, thinking of SX as the union of two cones CX with their bases identified,
compute the reduced homology groups of the union of any finite number of cones CX
with their bases identified.

Proof. Let p and q denote the tips of the two cones that compose SX. Let U “ SX{p and
V “ SX{q. By Mayer-Vietoris, we have

. . .Ñ rHn`1pUq ‘ rHn`1pV q Ñ rHn`1pSXq Ñ rHnpU X V q Ñ rHnpUq ‘ rHnpV q Ñ . . .

U X V “ X ˆ p0, 1q, which deformation retracts onto X. Additionally, both U and V
deformation retract onto a point, thus are contractible. Hence the Mayer-Vietoris sequence
gives the exact sequence

0 Ñ rHn`1pSXq Ñ rHnpXq Ñ 0
Hence the two groups are isomorphic for all n.

The second part of the proposition follows by induction. The induction hypothesis is

rHn`1

˜

k
ď

i“1
CX

¸

–

k´1
à

i“1

rHn`1 pSXq –
k´1
à

i“1

rHnpXq
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The base case is given by the previous part, which also gives the second isomorphism of
the inductive hypothesis. By the unnumbered example directly above Example 2.23 in
Hatcher, CX{X – SX. The first isomorphism in the inductive hypothesis then follows since

rHn`1

˜

k
ď

i“1
CX

¸

– rHn`1

˜

k´1
ď

i“1
CX,X

¸

– rHn`1

˜

k´1
ł

i“1
SX

¸

–

k´1
à

i“1

rHnpXq

�

Exercise 67. Let f : pX,Aq Ñ pY,Bq be a map such that both f : X Ñ Y and the
restriction f : AÑ B are homotopy equivalences.

(a) f˚ : HnpX,Aq Ñ HnpY,Bq is an isomorphism for all n.
(b) For the case of the inclusion f : pDn, Sn´1q ãÑ pDn, Dn´t0uq, f is not a homotopy

equivalence of pairs. That is, there is no g : pDn, Dn ´ t0uq Ñ pDn, Sn´1q such that fg
and gf are homotopic to the identity through maps of pairs. [ Observe that a homotopy
equivalence of pairs pX,Aq Ñ pY,Bq is also a homotopy equivalence for the pairs obtained
by replacing A and B by their closures .]

Proof. paq The exact sequence of pairs coupled with the homotopy equivalences gives that

. . . HnpAq HnpXq HnpX,Aq Hn´1pAq Hn´1pXq . . .

. . . HnpBq HnpY q HnpY,Bq Hn´1pBq Hn´1pY q . . .

– – – –

But then the proposition for n ą 0 follows by the five-lemma. For n “ 0, this follows directly
by the homotopy equivalences, as homotopy equivalent spaces have the same number of path
components.
pbq The observation in the problem statement follows since fpAq Ą fpAq. Suppose that the

inclusion is a homotopy equivalence. But then by the observation in the problem statement
and the previous part, this gives that there is a homotopy equivalence between Sn´1 “ Sn´1

and Dn ´ t0u “ Dn, a contradiction.
�

Lemma 3. Chain homotopy of chain maps is an equivalence relation.

Proof. Let fn : Cn Ñ Dn be a chain map. Let ψn : Cn Ñ Dn`1 be given by ψnpσq “ 0. Then
BDn ˝ ψn ` ψn´1 ˝ B

C
n´1 “ 0 “ fn ´ fn. Therefore, chain homotopy is reflexive.

Let fn, gn : Cn Ñ Dn be two chain maps and let ψn : Cn Ñ Dn`1 be a chain homotopy
f Ñ g such that fn´ gn “ BDn ˝ψn`ψn´1 ˝ B

C
n´1. Then ´ψ is a chain homotopy g Ñ f since

gn´ fn “ ´B
D
n ˝ψn´ψn´1 ˝ B

C
n´1 “ B

D
n ˝ p´ψnq` p´ψn´1q ˝ B

C
n´1. Therefore, chain homotopy

is symmetric.
Let fn, gn, hn : Cn Ñ Dn be three chain maps and let ψn : Cn Ñ Dn`1 be a chain homotopy

f Ñ g such that
fn ´ gn “ B

D
n ˝ ψn ` ψn´1 ˝ B

C
n´1

and let ϕn : Cn Ñ Dn`1 be a chain homotopy g Ñ h such that
gn ´ hn “ B

D
n ˝ ϕn ` ϕn´1 ˝ B

C
n´1.
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Then adding the two previous chain homotopies gives a chain homotopy f Ñ h since

fn ´ hn “ fn ´ gn ` gn ´ hn “ B
D
n ˝ ψn ` ψn´1 ˝ B

C
n´1 ` B

D
n ˝ ϕn ` ϕn´1 ˝ B

C
n´1

“ B
D
n ˝ pψn ` ϕnq ` pψn´1 ` ϕn´1q ˝ B

C
n´1

Therefore chain homotopy is transitive in addition to being reflexive and symmetric, and is
thus an equivalence relation. �

Lemma 4. Chain homotopy is compatible with the composition of chain maps.

Proof. ψ be a chain homotopy f1 Ñ f2 and let ϕ be a chain homotopy g1 Ñ g2. Suppressing
indices and composition for brevity, we have

g1f1 ´ g2f2 “ g1f1 ` g1f2 ´ g1f2 ´ g2f2

“ g1pf1 ´ f2q ` pg1 ´ g2qf2

“ g1pBψ ` ψBq ` pBϕ` ϕBqf2

“ Bg1ψ ` g1ψB ` Bϕf2 ` ϕf2B

“ Bpg1ψ ` ϕf2q ` pg1ψ ` ϕf2qB

Therefore g1f1 and g2f2 are chain homotopic. �

Exercise 68. Let K(Ab) be Ch(Ab) with homotopy classes of maps as its morphisms.
More precisely, let obpK(Ab)q be chain complexes in the category of abelian groups. Let
hompK(Ab)q be chain maps up to homotopy. That is, two chain maps f, g : C Ñ D
are equivalent if and only if there exists a sequence of morphisms ψn : Cn Ñ Dn`1 such
that fn ´ gn “ BD ˝ ψn ` ψn´1 ˝ B

C. K(Ab) is a well-defined category.

Proof. This follows by the previous two lemma. �

Exercise 69. A complex of abelian groups is called acyclic if its homology groups all
vanish. (Similarly, a topological space is called acyclic if its associated singular chain
complex is acyclic; i.e., if its singular homology groups all vanish.) A complex of abelian
groups A is called contractible if the identity map on A is chain homotopic to the zero
map. Prove that all contractible complexes are acyclic, and give an example of an acyclic
complex that is not contractible.

Proof. Let A be a contractible chain complex. Then there exist maps ψn : An Ñ An`1 such
that

σ “ Bn`1ψn`1pσq ` ψnBnpσq.

We claim A is acyclic. Since im Bn`1 Ă ker Bn, it suffices to show ker Bn Ă im Bn`1. If
σ P ker Bn, then σ “ Bn`1ψn`1pσq ` ψnBnpσq “ Bn`1ψn`1pσq ` ψnp0q “ Bn`1ψn`1pσq, so
σ P im Bn`1.

The chain complex
. . .Ñ 0 Ñ Z ˆ2

ÝÑ ZÑ Z{2ZÑ 0
is acyclic but not contractible, since if it were contractible, the short exact sequence would
split, and this is impossible since Z is isomorphic to the direct sum of Z and Z{2Z. �
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Exercise 70. S1ˆS1 and S1_S1_S2 have isomorphic homology groups in all dimen-
sions, but their universal covers do not.

Proof. Since both spaces are path-connected, their homology groups match in dimension zero.
H1pS

1 ˆ S1q – Z2 and H1pS
1 _ S1 _ S2q – H1pS

1q ‘H1pS
1q ‘H1pS

2q – Z‘Z‘ 0 – Z2, so
their homology groups match in dimension one. H2pS

1 ˆ S1q – Z and H2pS
1 _ S1 _ S2q –

H2pS
1q ‘H2pS

1q ‘H2pS
2q – 0‘ 0‘ Z – Z, so their homology groups match in dimension

two. In dimensions greater than two, the torus has trivial homology groups, and since S1

and S2 also have trivial homology groups in such dimensions and the homology group of the
wedge product splits up as a direct sum, the homology groups of both spaces match in all
dimensions.

The universal cover of the torus is the plane, which is contractible. Therefore, it suffices
to show that the universal cover of rX of S1 _ S1 _ S2 has a nontrivial homology group of
dimension greater than zero. Since rX is simply-connected, H2p rXq – π2p rXq by the Hurewicz
Theorem. Since π2p rXq – π2pS

1 _ S1 _ S2q fl 0, we are done. �

Exercise 71. Given a map f : S2n Ñ S2n, there exists x P S2n such that fpxq “ ˘x.
Therefore, every map RP2n

Ñ RP2n has a fixed point. The map h : S2n´1 Ñ S2n´1 given
by

hpx1, x2, . . . , x2nq “ px2,´x1, x4,´x3, . . . , x2n,´x2n´1q

induces a map on RP2n´1
Ñ RP2n´1 with no fixed points.

Proof. Suppose there does not exist x such that fpxq “ ´x. Then define a tangent vector
field v on S2n as follows. For each point x P S2n, let ppfpxqq denote the stereographic
projection of fpxq using ´x as the projection point. This is well defined since fpxq ‰ ´x for
all x P S2n. Let vpxq “ ppfpxqq ´ x.

v is a continuous vector field since f and the stereographic projection are continuous, and
since 2n is even, there must exist a point x0 such that v vanishes by Theorem 2.28 in
Hatcher. This implies ppfpx0qq “ x0. But ppfpx0qq “ ppx0q, so by injectivity, fpx0q “ x0.

Let f : RP2n
Ñ RP2n be any map. Extend f to a map g : S2n Ñ RP2n by gpxq “

gp´xq “ fpqpxqq, where q is the natural projection S2n Ñ RP2n. By Proposition 1.33 in
Hatcher, there exists a lift rg : S2n Ñ S2n. By the argument above, there exists x such that
rgpx0q “ ˘x0. But then qprgpx0qq “ qpx0q, and since q ˝ rg “ g, we have that gpx0q “ qpx0q.
Since gpx0q “ fpqpx0qq, qpx0q is a fixed point of f .

Let h be defined as in the proposition. h descends to a map RP2n
Ñ RP2n since qphpxqq “

qphp´xqq. But since hpxq ‰ ˘x for any x, the descent map has no fixed points. �
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Exercise 72. paq If f : Sn Ñ Sn is a map of degree zero, then there exist x, y P Sn such
that fpxq “ x, fpyq “ ´y.
pbq If F is a continuous, non-vanishing vector field on Dn, then there exist x P BDn

where F points radially outward and y P BDn where F points radially inward.

Proof. paq By property g of degree in Hatcher, since deg f ‰ p´1qn`1, it must have a fixed
point. Following the proof of property g of degree, if fpxq ‰ ´x for any x, then the line
segment fpxq Ñ x does not pass through the origin. Then define the homotopy

ftpxq “
p1´ tqfpxq ` tx
}p1´ tqfpxq ` tx}

from f to the identity map. Since the identity map does not have degree zero, this gives the
desired contradiction.
pbq Define G : Dn Ñ Sn´1 by Gpxq “ F pxq{}F pxq}. The restriction G|BDn : Sn´1 Ñ Sn´1

is equivalent to G ˝ i where i is the natural inclusion, so degG|BDn “ 0 as Dn is contractible.
The claim follows by the previous argument. �

Exercise 73. paq The long exact sequence of homology groups associated to the short
exact sequence of chain complexes 0 Ñ CipXq

n
ÝÑ CipXq Ñ CipX;Z{nZq yields short

exact sequences
0 Ñ HipXq{nHipXq Ñ HipX;Z{nZq Ñ n-TorsionpHi´1pXqq Ñ 0

where n-TorsionpGq is the kernel of the map G n
ÝÑ G, g ÞÑ ng.

pbq rHipX;Z{pZq “ 0 for all i and all primes p if and only if rHipXq is a vector space
over Q for all i.

Proof. paq We have the long exact sequence

. . .Ñ HipXq
η
ÝÑ HipXq

fn
ÝÑ HipX;Z{nZq Ñ . . .

Since im η “ ker f , we have that ker f “ nHipXq. By the first isomorphism theorem,
HipXq{ ker f – HipX;Z{nZq. Additionally, im B “ ker fn´1 “ n-TorsionpGq, we have the
sequence

0 Ñ HipXq{nHipXq Ñ HipX;Z{nZq Ñ n-TorsionpHi´1pXqq Ñ 0
which is exact since the first map is injective and since Bf “ 0.
pbq ( ùñ ) It suffices to show that rHipXq is free, abelian, torsion-free, and infinitely-

generated.
( ðù ) Q has no torsion and HipX;Qq{nHipX;Qq “ 0, so by the splitting lemma, the

claim follows. �

Exercise 74. HipRP8;Z{2Zq – Z{2Z for all i P N .

Proof. There exists a two-sheeted cover p : S8 Ñ RP8, so by the proof of proposition 2B.6
in Hatcher, the (transfer) sequence

. . .Ñ HipRP8;Z{2Zq Ñ HipS
8,Z{2Zq Ñ HipRP8;Z{2Zq Ñ Hi´1pRP8;Z{2Zq Ñ . . .

is exact. Since S8 is contractible, the sequence is
. . .Ñ HipRP8;Z{2Zq Ñ 0 Ñ HipRP8;Z{2Zq Ñ Hi´1pRP8;Z{2Zq Ñ 0 Ñ . . .
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In particular, we have short exact sequences
0 Ñ Hi`1pRP8;Z{2Zq Ñ HipRP8;Z{2Zq Ñ 0

for all i ą 0. Therefore Hi`1pRP8;Z{2Zq – HipRP8;Z{2Zq for all i ą 0.
We finish the remaining two cases. RP8 is path-connected, so H0pRP8;Z{2Zq – Z{2Z.

Adding cells of dimension greater than two does not affect the first homology group, so
H1pRP8;Z{2Zq – H1pRP2;Z{2Zq – Z{2Z. �

Exercise 75. Let f : C Ñ D be a morphism of chain complexes. Define Cf as
the mapping cone of f such that pCf qn “ Cn´1 ‘ Dn, with boundary maps dpx, yq “
p´dCn´1pxq, fn´1pxq ` d

D
n pyqq.

Cf is a chain complex.

Proof. We check that dCfn ˝ d
Cf
n`1 “ 0. We have

dCfn “

ˆ

´dCn´1 0
fn´1 dDn

˙

dCfn ˝ d
Cf
n`1 “

ˆ

dCn´1 ˝ d
C
n 0

´fn´1 ˝ d
C
n ` d

D
n ˝ fn dDn ˝ d

D
n`1

˙

The diagonal terms are zero by assumption. The last entry is zero by the commutativity of

. . . Cn Cn´1 . . .

. . . Dn Dn´1 . . .

dCn

fn fn´1

dDn

.

�

Exercise 76. Define a map j : D Ñ Cf by jnpyq “ p0, yq, and a map d : Cf Ñ Cr´1s
by dnpx, yq “ p´1qnx. Here Cr´1s denotes the same complex as C, but re-indexed so
that Cr´1sn “ Cn´1 and BCr´1s “ BC.

0 Ñ D
j
ÝÑ Cf

d
ÝÑ Cr´1s Ñ 0

is an exact sequence of complexes.

Proof. If y P ker jn, then y “ 0. Hence, ker j “ 0. If px, yq P ker d, then x “ 0. Hence,
im j “ ker d. d is surjective, and thus the sequence is exact. �

Exercise 77. A map f : C Ñ D of complexes is a quasi-isomorphism if it induces
isomorphisms on all homology groups. A morphism f is a quasi-isomorphism if and
only if Cf is acyclic.

Proof. p ùñ q Let rpx, yqs P HnpCf q. If px, yq is a cycle, then dpxq “ 0 and dpyq ` fpxq “ 0.
fpxq “ dp´yq, so fpxq is a boundary, and by injectivity, x is also a boundary, so x “ dpx1q
and rxs “ 0. This gives dpy`fpx1qq “ 0, so y`fpx1q is a cycle. By surjectivity, ry`fpx1qs “
fprx2sq, so y “ fpx2 ´ x1q. Thus

dpx, yq “ p´dpx2 ´ x1q, fpx2 ´ x1qq “ px2 ´ x1, 0q
so px, yq is a boundary. Since every cycle is a boundary, Cf is acyclic as all of its homology
groups vanish.
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p ðù q Suppose f˚rxs “ 0. Since r´x, ys is a cycle, it is also a boundary as Cf is acyclic.
In particular x is a boundary, and hence f˚ is injective since its kernel is trivial. Now suppose
that rys is a cycle in Dn. Then p0, yq is a cycle, and hence a boundary as Cf is acyclic. Hence
rys “ rdpy1q ` `fpx1qs and hence in the image of f˚, so f is a quasi-isomorphism.

�

Exercise 78. The homology groups of the following 2-complexes are described in the
following proof.
paq The quotient of S2 obtained by identifying north and south poles to a point.
pbq S1 ˆ pS1 _ S1q.
pcq The space obtained from D2 by first deleting the interiors of two disjoint sub-disks

in the interior of D2 and then identifying all three resulting boundary circles together
via homeomorphisms preserving clockwise orientations of these circles.
pdq The quotient space of S1ˆS1 obtained by identifying points in the circle S1ˆtx0u

that differ by a 2π{m - rotation and identifying points in the circle tx0u ˆ S
1 that differ

by a 2π{n - rotation.

Proof. paq By Example 0.8 in Hatcher, X » S2 _ S1. By Corollary 2.25 in Hatcher,

HnpXq – HnpS
2
_ S1

q “

#

Z n “ 0, 1, 2
0 n ą 2

.

pbq Let S1 and S1 _ S1 have the CW structures

Figure 2. CW complex structure on S1

Figure 3. CW complex structure on S1 _ S1
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By Theorem A.6 in Hatcher, the cellular chain complex of the product is

0 Ñ Ztγ ˆ δ1, γ ˆ δ2u
d“0
ÝÝÑ Ztα ˆ δ1, αˆ δ2, β ˆ γu

d“0
ÝÝÑ Ztα ˆ βu Ñ 0

Therefore,

HnpXq –

$

’

’

’

&

’

’

’

%

Z n “ 0
Z3 n “ 1
Z2 n “ 2
0 n ą 2

pcq Let X have the following CW complex structure.

Figure 4. CW complex structure on X

Then the cellular chain complex of X is

0 Ñ ZtV u d2
ÝÑ Ztγ, δ1, δ2u

0
ÝÑ Ztαu Ñ 0

where d2pV q “ ´γ. Hence,

HnpXq “

$

’

&

’

%

Z n “ 0
Z2 n “ 1
0 n ą 1

pdq We modify the attachment of the two-cell of the usual CW complex structure of the torus
to maintain the identification. Given the zero-cell α, and the two one-cells δ1, δ2, attach the
two-cell along δn1 δm2 δ´n1 δ´m2 . Thus the cellular chain complex for X is

0 Ñ ZtV u 0
ÝÑ Ztδ1, δ2u

0
ÝÑ Ztαu Ñ 0
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Hence,

HipXq “

$

’

’

’

&

’

’

’

%

Z i “ 0
Z2 i “ 1
Z i “ 2
0 i ą 2

�

Exercise 79. If X is a CW complex, then HnpX
nq is free.

Proof. Consider the cellular map dn : HnpX
n, Xn´1q Ñ Hn´1pX

n´1, Xn´2q. EachHnpX
n, Xn´1q

is free with generators the n-cells of X, so it suffices to show that ker dn – HnpX
nq, as the

kernel of a homomorphism is a subgroup, and a subgroup of a free group is free. By exact-
ness of the cellular chain complex, im dn`1 “ ker dn. Additionally, by Hatcher p. 139, the
diagram

HnpX
nq

Hn`1pX
n`1, Xnq HnpX

n, Xn´1q

jnBn`1

dn`1

commutes. Hence, HnpX
nq is a subgroup of HnpX

n, Xn´1q, so is free. �

Exercise 80. Suppose the space X is the union of open sets A1, . . . , An such that each
inter-section Ai1X . . .XAik is either empty or has trivial reduced homology groups. Then
rHipXq “ 0 for i ě n ´ 1, and give an example showing this inequality is best possible,
for each n.

Proof. Let Xk “
Ťk
i“1 Ai and Yk “

Şk
i“1 Ai. We claim for all k in t1, 2, . . . , nu, rHipXkXYk`1q

vanishes for all i ą k ´ 2. The proposition follows from the case k “ n.
The case k “ 1 follows by assumption. By induction, we have that rHipXk´1 X Yk`1q “ 0

for all i ą k ´ 3. This gives the sequence
rHipXk´1 X Ykq Ñ rHipXk´1 X Yk`1q ‘ rHipYkq Ñ rHipXk´1 X Yk`1q Ñ rHi´1pXk´1 X Ykq

by Mayer-Vietoris. This yields the exact sequence
rHipXk´1 X Yk`1q Ñ rHipXk X Yk`1q Ñ rHipXk´1 X Ykq

Since the outer terms are zero by induction for all i ą k ´ 2, the proposition follows.
Consider any n ą 3 and let X “ Sn´2. Decompose Sn´2 into n open sets such that

the conditions of the proposition hold. Since rHn´2pXq “ Z, the proposition gives the best
possible bound. �

Exercise 81. Let F be a free abelian group, and consider the solid diagram
F

A B

h f

g

Then there exists a map h making the diagram commute.
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Proof. Let tgiu be a basis of F . Since g is surjective, for all fpgiq, there exists ai such that
gpaiq “ fpgiq. Let hpgiq “ ai. By the universal property of free groups, h extends uniquely
to a homomorphism F Ñ A. But then since g˝h and f agree on where they map generators,
they must agree on all of F , again by the universal property and uniqueness. �

Exercise 82. If f : A Ñ F is a surjective map of abelian groups with F free, then
A “ ker f ‘ F 1, where F 1 – F .

Proof. The short sequence
0 Ñ ker f i

ÝÑ A
f
ÝÑ F Ñ 0

is exact since the inclusion i is injective and f is surjective. Now consider the solid diagram

F

A F

g
id

f

By the previous proposition, there exists a homomorphism g such that f ˝ g “ id. But then
the short exact sequence splits, and A – ker‘F , so the proposition follows. �

Exercise 83. Let pC, dq be a chain complex of abelian groups such that each Cn is
free. Then C is quasi-isomorphic to the chain complex H with Hn “ HnpCq and all
differentials the zero map. Equivalently, C is formal or quasi-isomorphic to its homology.

Proof. Consider the solid diagram

. . . Cn`1 Cn Cn´1 . . .

. . . ker dn`1
im dn`2

ker dn
im dn`1

ker dn´1
im dn

. . .

φn`1

dn`1

φn

dn

φn´1

0 0

We claim there exists a chain map φ : C Ñ H such that the diagram commutes and φ induces
isomorphisms on all homology groups. Explicitly, φn˝dn`1 “ 0 and Hnpφq : HnpCq Ñ HnpHq
is an isomorphism for all n.

Consider the short exact sequence
0 Ñ ker dn Ñ Cn Ñ im dn Ñ 0.

By the previous proposition, it splits, and hence Cn – ker dn ‘ im dn by some isomorphism
ψn. Let π1 : ker dn ‘ im dn Ñ ker dn be the natural projection onto the first component,
and let qn : ker dn Ñ ker dn{ im dn`1 be the quotient map to the coset space. Finally, let
φn “ qn ˝ π1 ˝ ψn.
φn ˝ dn`1 “ 0 as im dn`1 Ă ker qn, so φ is a valid chain map. Note that HnpHq “

ker dn
im dn`1

since each differential is the zero map. Hence, the induced map

Hpφnq : ker dn
im dn`1

Ñ
ker dn

im dn`1

is an isomorphism since ψn is an isomorphism.
�
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Exercise 84. A map f : X Ñ Y between connected, n-dimensional CW complexes is a
homotopy equivalence if it induces an isomorphism on πi for all i ď n.

Proof. Let py : rY Ñ Y denote the covering map of the universal cover of Y , and let px :
rX Ñ X denote the covering map of the universal cover of X. Now consider the map
f˝px : rX Ñ Y . Y is a connected CW complex, which is locally contractible, and in particular,
path-connected and locally path-connected. Since rX is simply connected, pf ˝pxq˚pπ1p rXqq –
0 Ă ppyq˚pπ1pY qq, and thus by the lifting criterion, the diagram

rX rY

X Y

px

Ćf˝px

py

f

commutes.
px and py induce isomorphisms on πi for i ą 1, and f also induces isomorphisms on πi

for all i ď n by assumption. Therefore, by commutativity of the diagram, Čf ˝ px induces
isomorphisms on πi for 1 ă i ď n. Additionally, since the universal covers are simply
connected, Čf ˝ px induces isomorphisms on πi for i ď n.

Since rY is a deformation retract of M
Ćf˝px

, we may replace rY with the mapping cone and
regard Čf ˝ px as an inclusion. Since rX and rY are simply connected, π1prY , rXq “ 0. By
the relative Hurewicz theorem, the first nonzero πiprY , rXq is isomorphic to the first nonzero
HiprY , rXq. By the long exact sequence of homotopy, since Čf ˝ px induces isomorphisms up
to πn, the groups πiprY , rXq vanish up to i “ n, and so also then do the groups HiprY , rXq.
Hence there are induced isomorphisms on all homology groups Hi for i ď n.

Now the claim that rX and rY are n-dimensional CW complexes suffices to finish off the
proof of the proposition. This is because if the claim is true, then HiprY , rXq vanish for
i ą n, and so by Corollary 4.33 in Hatcher, Čf ˝ px is a homotopy equivalence. But then it
must induce isomorphisms on all homotopy groups πi for all i ą n, and hence so must f by
commutativity of the diagram. The proposition then follows by Whitehead’s theorem. The
claim itself regarding universal covers of CW complexes is proven in detail in Whitehead,
J. H. C. Combinatorial homotopy. I. Bull. Amer. Math. Soc. 55 (1949), 213–245. Each
attaching map of the base CW complex can be lifted to the universal cover as cells are
contractible, and so there is one cell per each lift corresponding to the base space. This cell
decompositon has the right topology since the covering map is a local homeomorphism. �

Exercise 85. Let X be an pn´ 1q-connected CW complex with n ą 1.
paq The natural maps πn`1pX

n`1q Ñ πn`1pXq and Hn`1pX
n`1q Ñ Hn`1pXq are sur-

jective.
pbq The Hurewicz map πn`1pX

n`1q Ñ Hn`1pX
n`1q is surjective.

pcq The map πn`1pXq Ñ Hn`1pXq is surjective.
pdq If n “ 1, the corresponding statement is false.

Proof. paq Consider an element γ P πn`1pXq. By cellular approximation, it can be repre-
sented by a cellular map Sn`1 Ñ X. Hence, we can find a representative which factors over
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the inclusion Xn`1 Ñ X, thus γ lies in the image of the induced map of the inclusion. The
case for homology follows by Lemma 2.34 in Hatcher.
pbq Consider the commutative diagram

πn`1pX
nq πn`1pX

n`1q πn`1pX
n`1, Xnq πnpX

nq

Hn`1pX
nq Hn`1pX

n`1q Hn`1pX
n`1, Xnq HnpX

nq

a

h1 h2

b

h3

c

h4

a1 b1 c1

given by the long exact sequence for the pair pXn`1, Xnq associated to the Hurewicz map
h. By cellular homology, Hn`1pX

nq vanishes, so a1 is injective. Furthermore, h3 and h4 are
isomorphisms by the Hurewicz theorem. The claim follows by a diagram chase. Consider
any element y in πn`1pX

n`1q. Let k “ h´1
3 pb

1pyqq. Now h4pcpkqq “ c1ph3pkqq “ c1pb1pyqq “ 0
by commutativity and exactness. By injectivity of h4, cpkq is trivial, so by exactness, there
exists x such that bpxq “ k. By commutativity, h3pbpxqq “ b1ph2pxqq “ b1pyq. By injectivity
of a1, h2pxq “ y.
pcq The composition of πn`1pX

n`1q Ñ Hn`1pXq and πn`1pX
n`1q Ñ Hn`1pX

n`1q is a
surjective map, which is a restriction of h, so h must be surjective.
pdq The torus, which is 0-connected, has contractible universal cover, and hence trivial

homotopy. But H2pTq – Z as shown previously, so no surjection exists.
�

Exercise 86. The tensor product of two chain complexes C b C 1 is a chain complex,
where the differential map is given by

B
CbC1

pc, c1q “ pBCpcq, c1q ` p´1qdegpcq
pc, BC

1

pc1qq.

Proof. Composing twice, we have

B
2
pcb c1q “ BpBCpcq b c1 ` p´1qicb BC1pc1qq

“ p´1qi´1
B
C
pcq b BC

1

pc1q ` p´1qiBCpcq b BC1pc1q
“ 0

�

Exercise 87. Let F be a field and X be a space such that HipX;F q has finite dimension
for all i. Define the Poincaré series pX to be the formal power series

pXptq “
ÿ

i

pdimF HipX;F qqti.

The proof below gives formulas for the Poincaré series of Sn,RPn,CPn,RP8,CP8, and
the orientable surface Mg of genus g. If X and Y are spaces with well-defined Poincaré
series, then pXš

Y ptq “ pXptq ` pY ptq and pXŽ

Y ptq “ pXptq ` pY ptq ´ 1.

Proof. Sn: HipSn;F q “
#

F i P t0, nu
0 else

. Hence, pSnptq “ 1` tn.
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RPn: We have pRPnptq “

#

1` tn n odd
1 else

. This follows since for n even, all homology

groups of dimension greater than zero with coefficients in a 2-divisible ring vanish, while for
n odd, the n-th homology group does not vanish as we have shown previously.

CPn: Complex projective space has homology 0 in all odd dimensions and homology
HipCPn;Z “ Z in all even dimension up to 2n. Hence, pCPnptq “

řn
i“0 t

2n.
RP8: All homology groups are with coefficients in Z{2Z are Z{2Z, and hence pRP8ptq “

ř8

i“0 t
n.

CP8: pRP8ptq “
ř8

i“0 t
2n by Hatcher’s description of the homology being Z{2Z in each

even dimension.
Mg: By using the identification with the connected sum of tori, we know the homology

groups are Z for H0pM ;Zq and H2pM ;Zq. Additionally, H1pM ;Zq “ Z2g. Hence, pMgptq “
1` 2gt` t2.

For pXš

Y ptq “ pXptq ` pY ptq, we know that HipX
š

Y ;F q “ HipX;F q ‘HipY ;F q, and
thus the dimensions add and the result follows by linearity.

Additionally, HipX _Y ;F q “ rHipX
š

Y ;F q. This gives the same result for i ą 0, but for
i “ 0, it vanishes, so pXŽ

Y ptq “ pXptq ` pY ptq ´ 1. �

Exercise 88. If F is a field, the Künneth formula reduces to a natural isomorphism
HnpX ˆ Y ;F q –

à

p`q“n

HppX;F q bF HqpY ;F q.

If X and Y are spaces with well-defined Poincaré series, then pXˆY ptq “ pXptqpY ptq.

Proof. The formula reduces since if F is a field, the groups TorF vanish, giving that the map
in the short exact sequence in the proposition is an isomorphism. The Poincaré formula
follows since

dimF pHnpX ˆ Y ;F qq “
ÿ

p`q“n

dimF pHppX;F q bHqpY ;F qq

“
ÿ

p`q“n

dimF HppX;F q ¨ dimF HqpY ;F q

by the fact that the dimension of a product is the product of the dimensions. But this is
exactly the formula for the coefficients of the product of two polynomials, hence pXˆY ptq “
pXptqpY ptq. �

Exercise 89. Let X be the CW complex obtained by attaching two 2-cells to S1, one
via a degree p map and one via a degree q map. Below is a description of the homology
of X and when X is equivalent to S2.

Proof. Taking care of the homology groups independent of p and q, note that HnpXq “ 0
for n ą 2 since X has no n-cells for n ą 2. Additionally, since X is non-empty and path-
connected, H0pXq » Z.

Now for some notational setup. Give S1 the standard CW complex structure of one 0-cell
e0 and one 1-cell e1 with the usual attaching map, and let e2

p and e2
q denote the two 2-cells

attached via a degree p map and a degree q map, respectively. X is connected and has only
one 0-cell, so the differential map d1 “ 0 by Hatcher, p. 140. Furthermore, by assumption,
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d2pe
2
pq “ pe1 and d2pe

2
qq “ qe1. The cellular chain complex of X is

0 Ñ Z‘ Zte2
p, e

2
qu

d2
ÝÑ Zte1

u
d1
ÝÑ Zte0

u Ñ 0.

Let’s pin-down the kernel and image of d2. The trivial case is if the degrees of both
attaching maps are zero, that is, p “ q “ 0. Then d2pme

2
p ` ne2

qq “ 0 ` 0 “ 0, so H1pXq “

kerpd1q{ impd2q » Z{0 » Z and H2pXq “ kerpd2q » Z2. In this case, X and S2 cannot be
(weakly) homotopy equivalent since their homology groups are not isomorphic.

Otherwise, suppose either p ‰ 0 or q ‰ 0. Any pair pm,nq P Z2 maps as d2pme
2
p ` ne

2
qq “

md2pe
2
pq ` nd2pe

2
qq “ mpe1 ` nqe1 “ pmp ` nqqe1, using the homomorphism property. By

Bézout’s Identity, all integers of the form pmp ` nqq are multiples of pp, qq, the greatest
common divisor of p and q. Hence, im d2 » pp, qqZ, and H1pXq » Z{pp, qqZ. If pp, qq ‰ 1,
then X is not homotopy equivalent to S2 since H1pXq » Z{pp, qqZ fi 0 “ H1pS

2q.
Now to understand the kernel. By the above, the kernel of d2 is given by all points

pm,nq P Z‘Z such that pm “ ´qn, which is generated by pq{pp, qq,´p{pp, qqq since pq{pp, qq
is the least common multiple of p and q. Hence, ker d2 » Z and thus H2pXq “ ker d2 » Z.

If pp, qq “ 1, we claim that we can construct a map f : X Ñ S2 which induces an isomor-
phism on the homology groups, and thus is a homotopy equivalence. It is necessary to note
a small, technical detail here. We have only shown ‘Whitehead’s Theorem for homology’,
Corollary 4.33 in Hatcher, for singular homology. Therefore, we need f to induce an iso-
morphism on singular homology. However, if f induces an isomorphism on cellular homology,
and f is a cellular map, then the induced map corresponds naturally to the isomorphism
between cellular and singular homology, so a cellular map suffices. This is exercise 2.2.17 in
Hatcher, which follows by the naturality of the long exact sequence of homology, the proof
of which is not included here for brevity. We proceed by constructing the claimed cellular
map.

For one, the induced isomorphism on H2 must be an isomorphism between the kernels of
the differential maps, since no cells of dimension three or greater are attached. The kernel
of d2 is generated by pq,´pq in this case since p and q are relatively prime by the argument
above, and the kernel of d12 is Z since this differential is trivial for S2 using the CW complex
structure of one 2-cell and one 0-cell. Therefore, the induced map must send pq,´pq ÞÑ 1.

Then, to create the cellular map which induces the desired map, let m,n be the Bézout
coefficients, the two integers such that pm`qn “ 1 “ pp, qq. Let e2 be the 2-cell of S2. Then
the cellular map is given by mapping e2

p ÞÑ e2 via any degree n map, and mapping e2
q ÞÑ e2

via any degree ´m map. This gives that f˚pq,´pq “ qn ´ p´mqp “ 1. f can also map the
0-cell of X to the 0-cell of S2, and the 1-cell of X to the 0-cell of S2 or any other point, thus
inducing isomorphisms on H1 and H0 as well. f thus induces isomorphisms on the cellular
homology groups, and since it is cellular, its induced map also induces an isomorphism on
the singular homology groups, so it must be a homotopy equivalence by Corollary 4.33 in
Hatcher. �

Exercise 90. Any continuous f : Sn Ñ Sn such that deg f ‰ p´1qn`1 has a fixed point.

Proof. This is the contrapositive of property g of degree in Hatcher, p. 134. Below is a
reproduction of the proof for completeness.

Suppose that f has no fixed point. Then the line segment γ : I Ñ Rn`1 from fpxq to
´x given by γtpxq “ p1´ tqfpxq ´ tx does not pass through the origin. Thus, there exists a
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homotopy

ftpxq “
γtpxq

}γtpxq}

from fpxq to the antipodal map. But by property f of degree in Hatcher, p. 134, the
antipodal map has degree p´1qn`1 since it is the composition of pn` 1q reflections in Rn`1,
each changing the sign of one coordinate. Hence, by property c of degree in Hatcher, deg f “
p´1qn`1. �

Exercise 91. Recall than an equivalence of categories is a functor F : C Ñ C 1, a
functor G : C 1 Ñ C, and two natural isomorphisms ε : FG Ñ idC1 and η : idC Ñ GF .
A natural isomorphism is a natural equivalence such that each defining morphism is an
isomorphism, and idC and idC1 are the identity functors. Suppose that C has all limits.
Then C 1 has the same property and if α : D Ñ C is a diagram in C, indexed by a small
category D, limpFαq “ F plimαq in the sense that for any choice of the limits, the results
are uniquely isomorphic.

Proof. For all diagrams α1 : D1 Ñ C 1 in C 1, Gα1 : D1 Ñ C yields a diagram in C. By
assumption, C has a limit pL, ψq of Gα1. We claim F ppL, ψqq is a limit of α1.

First, we must show it is a cone. For all objects X and Y in D1, and all morphisms
f : X Ñ Y , the diagram

(1)
L

pGα1qpXq pGα1qpY q

ψX ψY

pGα1qpfq

commutes by functoriality of Gα1 and the fact that pL, ψq is a limit of Gα1, and in particular,
a cone. By functoriality of F , the diagram

(2)
F pLq

pFGqpα1pXqq pFGqpα1pY qq

F pψXq F pψY q

pFGqpα1pfqq

commutes. Now, since ε is a natural isomorphism, it is in particular a natural transformation,
so the diagram

(3)
pFGqpα1pXqq pFGqpα1pY qq

idC1pα1pXqq idC1pα1pY qq

εα1pXq

pFGqpα1pfqq

εα1pY q

idC1 pα1pfqq
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commutes. The bottom row of 3 can simply be replaced by α1pXq
α1pfq
ÝÝÝÑ α1pY q by the

definition of idC1 . Combining 3 and 2 together yields the commutative diagram

(4)

F pLq

pFGqpα1pXqq pFGqpα1pY qq

α1pXq α1pY q

F pψXq F pψY q

εα1pXq

pFGqpα1pfqq

εα1pY q

α1pfq

.

Thus, F pLq is a cone to α1.
Suppose pM,φq is another cone to α1. This yields the commutative diagram

(5)

M

F pLq

pFGqpα1pXqq pFGqpα1pY qq

α1pXq α1pY q

φX φY

F pψXq F pψY q

εα1pXq

pFGqpα1pfqq

εα1pY q

α1pfq

.

By functoriality of G applied to the outer morphisms of 5,

(6)
GpMq

Gpα1pXqq Gpα1pY qq

GpφXq GpφY q

Gpα1pfqq

.

commutes. Now, since pL, ψq is a limit of Gα1, there exists a unique map u such that

(7)

GpMq

L

Gpα1pXqq Gpα1pY qq

GpφXq GpφY qu

ψX ψY

Gpα1pfqq

.
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commutes. By functoriality of F , diagram 7, and diagram 5, the diagram

(8)

M

pFGqpMq

F pLq

pFGqpα1pXqq pFGqpα1pY qq

α1pXq α1pY q

φX φY

F puqpFGqpφXq pFGqpφY q

F pψXq F pψY q

εα1pXq

pFGqpα1pfqq

εα1pY q

α1pfq

.

commutes. Flattening out right square of 8 yields the solid commutative diagram

(9)
M α1pY q

pFGqpMq pFGqpα1pY qq

φY

pFGqpφY q

εM εα1pY q

where the map εM exists making the diagram commute since ε is a natural transformation
FG Ñ idC1 . Additionally, εM has an inverse ε´1

M since ε is also a natural isomorphism. By
the same argument, we have commuativity of the left square. Thus, comibining these facts,
and diagrams 9 and 8 yields the commutative diagram

(10)

M

pFGqpMq

F pLq

pFGqpα1pXqq pFGqpα1pY qq

α1pXq α1pY q

φX

ε´1
M

φY

εM

F puqpFGqpφXq pFGqpφY q

F pψXq F pψY q

εα1pXq

pFGqpα1pfqq

εα1pY q

α1pfq

.
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This yields that the mediating map of the limit, F puqε´1
M : M Ñ F pLq always exists. It

remains to show that this map is unique.
Any map µ : M Ñ F pLq factors through pFGqpMq using εM , since

M F pLq

pFGqpMq

µ

ε´1
M

µεM

commutes. Thus, if the map pFGqpMq Ñ F pLq is unique, then µ is unique. Hence, it suffices
to show that the map F puq is unique in 10. Suppose there exists µ such that

(11)

pFGqpMq

F pLq

pFGqpα1pXqq pFGqpα1pY qq

µpFGqpφXq pFGqpφY q

F pψXq F pψY q

pFGqpα1pfqq

.

commutes. We aim to show µ “ F puq. By functoriality of G, and application of the natural
isomorphism η, and the fact that pL, ψq is a limit of Gα1, the diagram

(12)

GpMq

pGFGqpMq

pGF qpLq

L

pGF qpGpα1pXqqq pGF qpGpα1pY qqq

Gpα1pXqq Gpα1pY qq

GpφXq

η´1
M

GpφY q

ηM

Gpµq

pGFGqpφXq pGFGqpφY q

ηL

pGF qpψXq pGF qpψY q

ηGpα1pXqq

pGF qpGpα1pfqqq

ηGpα1pY qq

Gpα1pfqq

.

commutes. Note that ηLGpµqη´1
M : GpMq Ñ L is a mediating map for pL, ψq, so by uniqueness

of the limit, we must have that u “ ηLGpµqη
´1
M . This equation is just the commutative
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diagram

(13)
pGFGqpMq pGF qpLq

GpMq L

Gpµq

ηM ηL

u

We also have the commutative diagram of the natural transformation

(14)
pGFGqpMq pGF qpLq

GpMq L

pGF qpuq

ηM ηL

u

By the previous two diagrams, ηLGpµq “ ηLGpF puqq so Gpµq “ GpF puqq as ηL is an iso-
morphism. Composing with F on both sides yields pFGqpµq “ pFGqpF puqq. Now, using the
natural transformation ε gives the commutative diagrams

pFGFGqpMq pFGF qpLq

pFGqpMq F pLq

pFGqpµq

εpFGqpMq εF pLq

µ

pFGFGqpMq pFGF qpLq

pFGqpMq F pLq

pFGF qpuq

εpFGqpMq εF pLq

F puq

Writing commutativity down explicitly, εF pLqpFGqpµq “ µεpFGqpMq and εF pLqpFGqpF puqqq “
F puqεpFGqpMq. Since pFGqpµq “ pFGqpF puqq, we have that F puqεpFGqpMq “ µεpFGqpMq, or
that µ “ F puq by composing on the left with εpFGqpMq. Thus the mediating map is unique,
and F ppL, ψqq is a limit of α1, and thus C 1 has all limits.

We now show that F plimαq “ limpFαq. This follows directly from two claims:
paq If A and B are limits over the same diagram, then there is a unique isomorphism

AÑ B.
pbq limpFαq and F plimαq are limits over the same diagram.
We have already proven claim paq in class, using the universal property and uniqueness

of the mediating map for limits. For claim pbq, limpFαq is a limit over Fα by definition.
We have shown above that given the equivalence of categories, if pL, ψq is a limit of α, then
F ppL, ψqq is a limit of Fα. �

Exercise 92. Let X denote pS1q3, the three-dimensional torus, with its natural product
CW complex structure. Let f : S3 Ñ S2 be the Hopf fibration and g : X Ñ S3 the map
collapsing the two-skeleton of X to a point. f ˝ g induces the trivial map on all πn and
all rHn, but is not nullhomotopic.

Proof. Since S1 is path-connected, πnppS1q3q » πnpS
1q ˆ πnpS

1q ˆ πnpS
1q by Proposition

4.2 in Hatcher. Thus, πnppS1q3q is trivial for n ‰ 1 since πnpS1q “ 0 for n ‰ 1, and thus
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the induced map pf ˝ gq˚ : πnppS1q3q Ñ πnpS
2q is trivial for all n ‰ 1. But for n “ 1,

π1pS
2q “ 0, so the induced map must be trivial for all n. Note that rHnpS

3q “ 0 for n ‰ 3,
and rHnpS

2q “ 0 for n ‰ 2, so the induced map f˚ : rHnpS
3q Ñ rHnpS

2q must be trivial for all
n, and hence the induced map pf ˝ gq˚ must also be trivial for all n.

Suppose for a contradiction that f ˝g is null-homotopic via a homotopy h : pS1q3ˆI Ñ S2

where hpx, 0q “ pf ˝ gqpxq and hpx, 1q “ s0 for some s0 P S
2. Since f is a fibration, there

exists a lift rh such that

pS1q3 S3

pS1q3 ˆ I S2

g

pS1q3ˆt0u f

h

rh

commutes. By commutativity, f ˝ rh “ h, and since hpx, 1q “ s0, it follows that rhpx, 1q is
contained in f´1ps0q “ S1. Thus prh1q˚ factors as a map pS1q3 Ñ S1 Ñ S3, but the first map
must induce the trivial map on the homology groups of dimension three since H3pS

1q “ 0.
Hence, g˚ : H3ppS

1q3q Ñ H3pS
3q must be trivial, since g “ rh0 is homotopic to rh1 via rh. But

g takes the 3-cell of pS1q3 to the 3-cell of S3 via a degree one map, and since it is cellular,
the induced a map on the cellular chain complexes cannot be trivial due to its degree as
H3ppS

1q3q » Z by Hatcher, p. 143, and H3pS
3q » Z. �

Exercise 93. Let i : A Ñ X be an inclusion. Show that i is null-homotopic if, and
only if, X is a retract of the mapping cone Ci of i. If i is nullhomotopic, HnpX,Aq »
rHnpXq ‘ rHn´1pAq for each n ě 1.

Proof. To codify conventions, let Ci be the space Aˆ I
š

X with the identifications pa, 0q „
pa1, 0q for all a, a1 P A, and pa, 1q „ ipaq “ a.

( ùñ ) Let h : A ˆ I Ñ X be the null-homotopy of the inclusion such that hpa, 0q “ a0
and hpa, 1q “ a for some a0 P A. To construct the necessary retract, we can first define a
map rr : A ˆ I

š

X Ñ X which is constant on equivalence classes, and thus descends to
a retract r : Ci Ñ X. Let rr be such that if x P X, rrpxq “ x. Otherwise, if x “ pa, tq P
AˆI, rrpxq “ rrpa, tq “ hpa, tq. To verify that the descent map is well-defined, we check the two
identifications. rrpa, 0q “ hpa, 0q “ a0 “ hpa1, 0q “ rrpa1, 0q and rrpa, 1q “ hpa, 1q “ a “ rrpaq,
so the descent map is well-defined. It is also a retract since rpxq “ x for all x P X.

( ðù ) Let r : Ci Ñ X be a retract. This extends to a map rr : A ˆ I
š

X Ñ X which
is constant on equivalence classes pa, 1q „ a and pa, 0q “ pa1, 0q for all a, a1 P A. Hence, for
all a, a1 P A, rrpa, 0q “ rrpa1, 0q, thus rrpa, 0q “ a0 for some a0 P A for all a P A. Additionally,
rrpa, 1q “ rrpaq, and since r is a retract, rrpaq “ a. Recapitulating, for all a P A, rrpa, 0q “ a0
and rrpa, 1q “ a, so rr|AˆI is the desired null-homotopy of the inclusion i : AÑ X.

Now, suppose that i : A Ñ X is null-homotopic. Consider the long exact sequence of a
pair

. . .Ñ HnpAq
i˚
ÝÑ HnpXq

j˚
ÝÑ HnpX,Aq

B
ÝÑ Hn´1pAq Ñ . . . .

Since i is null-homotopic, i˚ “ 0 for all HnpAq Ñ HnpXq for n ě 1, and the identity for
n “ 0. By exactness, each j˚ has trivial kernel, and thus is injective for n ě 1. Switching to
reduced homology thus gives short exact sequences

0 Ñ rHnpXq Ñ HnpX,Aq Ñ rHn´1pAq Ñ 0
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for n ě 1. By Hatcher, p. 125, rHnpCiq » HnpX,Aq. By the previous argument, since the
inclusion is null-homotopic, X must be a retract of Ci. By definition of retract, r ˝ i “
idX , so by functoriality r˚ ˝ i˚ “ pidXq˚, and thus the short exact sequence splits, yielding
HnpX,Aq » rHnpCiq » rHnpXq ‘ rHn´1pAq for each n ě 1. �

Exercise 94. Let X be path-connected, locally path-connected, and semi-locally simply
connected. Let G1 Ă G2 be subgroups of π1pX, x0q. Let pi : XGi Ñ X be the covering
map corresponding to Gi. There is a covering space map f : XG1 Ñ XG2 such that
p2 ˝ f “ p1.

Proof. The setup of this problem corresponds to Proposition 1.36 in Hatcher. In the
construction, XG1 and XG2 are quotients of the universal cover, and hence are path-connected
covering spaces. Indeed, the correspondence refers to isomorphism classes of path-connected
covering spaces, Theorem 1.38 in Hatcher. Additionally, XG1 and XG2 must be locally
path-connected as well, since a covering map is a local homeomorphism and X is locally
path-connected. Now, consider the solid diagram

XG2

XG1 X

p2

p1

f .

Pick arbitrary basepoints x10 P p´1
1 px0q and x20 P p

´1
2 px0q. Since p2 is a covering map and

XG1 is path-connected and locally path-connected, and pp1q˚pπ1pXG1 , x
1
0qq “ G1 Ă G2 “

pp2q˚pπ1pXG2 , x
2
0qq by assumption, so by the lifting criterion, Proposition 1.33 in Hatcher,

f exists making the diagram commute.
It remains to show that f is a covering map. By assumption, p2 is a covering map,

so let tUxu denote the cover of X by evenly covered neighborhoods. For each x P XG2 ,
let Vx denote the neighborhood of x that maps homeomorphically onto the evenly covered
neighborhood Ux of p2pxq. Since p2 ˝ f is a covering map, pp2 ˝ fq

´1pUxq is a disjoint union
of open sets, or sheets, in XG1 . Note that, for any particular sheet Vx with p2pVxq “ Ux,
pp2˝fq

´1pp2pVxqq “ f´1pp´1
2 pp2pVxqqq “ f´1pVxq is thus a disjoint union of open sets. Finally,

since p2 ˝ f |f´1pVxq is a homeomorphism onto Ux, and p2|Vx is a homeomorphism onto Ux,
f |f´1pVxq must be a homeomorphism onto Vx. Thus, f is a covering map, with tVxu providing
the cover of XG2 by evenly covered sets. �

Exercise 95. Let X be the space obtained from the cube I3 by identifying opposite sides
via the map translating the face by a unit distance in the normal direction and twisting
by one-half of a full rotation. Below is a presentation of the fundamental group and all
homology groups of X.

Proof. The cube I3 is homemorphic to the disk D3, so X is homeomorphic to D3 with
antipodal points on BD3 identified, since the faces of the cube are rotated by π before identi-
fication. RP3 can be formed by identifying antipodes on S3. Furthermore, this identification
can be restricted to identifying antipodes on the equator of S3, which is homeomorphic to
D3. Hence, we have that X is homeomorphic to RP3. First, π1pRP3

q » Z{2Z since S3 is
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both a universal cover and a double cover. By Hatcher, Example 2.42,

HipRP3
q »

$

’

&

’

%

Z i “ 0 or i “ n odd.
Z{2Z 0 ă i ă n, i odd
0 otherwise

A presentation for Z is given by xi �y. That is, a single generator with no relations. A
presentation for Z{2Z is given by Z{2Z » xi � i2 “ 0y. �

Exercise 96. Let f : Y Ñ X be a fibration and let α : I Ñ X be a path from x to
y. Apply the defining property of a fibration to the map f´1pxq ˆ t0u Ñ f´1pxq ˆ I
to show that α induces a map α˚ : f´1pxq Ñ f´1pyq. The homotopy class of α˚ only
depends on the homotopy class of α, and that in fact this construction yields a functor
ΓX Ñ HTop, where ΓpXq is the fundamental groupoid of X. In particular, any two
points in the same path-component of X have homotopy equivalent fibers.

Proof. Construct from the path α a homotopy at : f´1pxq Ñ X given by atpf´1pxqq “ αptq.
An initial lift ra0 is given by the inclusion f´1pxq ãÑ Y . f is a fibration, so by the homotopy
lifting property, there exists a lift rat : f´1pxq ˆ I Ñ Y . This construction yields the usual
fibration commutative diagram

f´1pxq Y

f´1pxq ˆ I X

ra0

f´1pxqˆt0u f

a

ra
.

Note that ra1 is a map α˚ : f´1pxq Ñ f´1pyq by commutativity since fprapf´1pxq, 1qq “
apf´1pxq, 1q “ αp1q “ y.

Suppose α » α1 rel BI via hps, tq : I ˆ I Ñ X. We aim to show a˚ » a1˚. h gives maps
hst : f´1pxq Ñ X given by hstpf

´1pxqq “ hps, tq. Let rh0,t “ a˚ and rh1,t “ a1˚. Let rhs,0 be the
inclusion f´1pxq ãÑ Y . These maps define an initial lift rhBI : f´1pxq ˆ I ˆ BI Ñ Y .

By Hatcher, p.405, f satisfies the homotopy lifting property for any pair pZ ˆ I, Z ˆ BIq.
Thus there exists rh such that

f´1pxq ˆ I ˆ BI Y

f´1pxq ˆ I ˆ I X

rhBI

f

h

rh

commutes. rhs,1 then gives a homotopy a˚ to a1˚ by commutativity. Hence, the homotopy
class of each a˚ is independent of the choice of lift. It then follows that this construction is
a well-defined map F : ΓX Ñ HTop. Even better, F is actually a functor, as it preserves
identity morphisms and composition of morphisms. It preserves the identity since a constant
path αx at x gives a homotopy a˚ to a˚, which is the identity homotopy. It also preserves
composition since for the composition of two paths a ˚ a1, the lift pa ˚ a1q˚ is homotopy
equivalent to a˚a1˚. To see this, if rat is a lift where ra1 “ a˚ and ra1t is defined similarly, then
let rat be defined as ra2t for t P r0, 1

2s and ra12t´1 ˝ a˚ for t P r1
2 , 1s. This gives a lift rat where

ra1 “ pa ˚ a
1q˚.
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Finally, if α : I Ñ X is a path from x to y, then F pαq is a homotopy f´1pxq to f´1pyq
with inverse F pα´1q, since id “ F pidq “ F pα´1 ˚ αq “ F pα´1q ˝ F pαq by functoriality. Thus
a path x to y gives a homotopy equivalence f´1pxq to f´1pyq. �

Exercise 97. Let X be a space. HnpX;Zq “ 0 for all n ą 0 if, and only if, HnpX;Qq “ 0
and HnpX;Z{pZq “ 0 for all prime numbers p and all n ą 0.

Proof. By the universal coefficient theorem, the sequence

0 Ñ HipX;Zq b AÑ HipX;Aq Ñ TorpHi´1pX;Zq, Aq Ñ 0

is exact for any abelian group A.
p ùñ q If HnpX;Zq “ 0 for all n ą 0, the sequence above becomes

0 Ñ HnpX;Aq Ñ TorpHn´1pX;Zq, Aq Ñ 0

for all n ą 0, since 0 b A “ 0 as any 0 b a is the zero element by Hatcher, p. 215.
Thus, by exactness, HnpX;Aq » TorpHn´1pX;Zq, Aq. For n ą 1,TorpHn´1pX;Zq, Aq “ 0
since Hn´1pX;Zq “ 0 and 0 is torsion-free. Additionally, for n “ 1, H0pX;Zq counts the
path-components of X, so it is isomorphic to Zn for some n, which is also torsion-free.
Hence, TorpHn´1pX;Zq, Aq “ 0 for all n ą 0 by Proposition 3A.5 in Hatcher and thus
HnpX;Aq “ 0 for n ą 0 for both A “ Q and A “ Z{pZ for all prime p.
p ðù q If HnpX,Qq “ 0 for all n ą 0, setting A “ Q, the sequence above yields that

0 Ñ HnpX;Zq bQÑ 0 Ñ TorpHi´1pX;Zq,Qq Ñ 0

is exact, so by exactness, HnpX;Zq b Q “ 0. We claim HnpX;Zq » HnpX;Zq b Q, which
then finishes the proof as HnpX;Zq bQ “ 0.
HnpX;Z{pZq “ 0 for all n ą 0 and all primes p if and only if HnpX;Zq is a vector space

over Q for all n ą 0. Also, by Hatcher, p. 215, HnpXq b Q “ HnpXq bQ Q. This reduces
what is left to showing that for X a vector space over Q, X bQ Q » X. But it is a general
algebraic fact that if M is an R-module, then M bR R »M . �

Exercise 98. If X and Y are pointed spaces and n ě 2,
πnpX _ Y q » πnpXq ‘ πnpY q ‘ πn`1pX ˆ Y,X _ Y q.

Proof. Consider the long exact sequence of relative homotopy groups

. . .Ñ πn`1pX ˆ Y,X _ Y q
B
ÝÑ πnpX _ Y q

i˚
ÝÑ πnpX ˆ Y q Ñ . . .

where i˚ is the induced map of the inclusion i : X _ Y Ñ X ˆ Y . We claim that there
is a right splitting map j˚ such that i˚ ˝ j˚ “ id˚. This claim gives that πnpX _ Y q »
πnpX ˆ Y q ‘ πn`1pX ˆ Y,X _ Y q, from which the proposition follows by Proposition 4.2
in Hatcher, which gives πnpX ˆ Y q » πnpXq ˆ πnpY q.

Now to address the claim. Consider any element rγs P πnpX ˆ Y q, represented by γ :
Sn Ñ X ˆ Y . Composing with the natural projections px and py gives px ˝ γ : Sn Ñ X and
py ˝ γ : Sn Ñ Y , which when composed with the inclusion give i ˝ px ˝ γ : Sn Ñ X ãÑ X _ Y
and i ˝ py ˝ γ : Sn Ñ Y ãÑ X _ Y . Re-label these γx and γy respectively. Now consider the
equivalence class rγx ˚γys P πnpX _Y q. Define a map j˚prγsq “ rγx ˚γys. It remains to show
that j˚ is a homomorphism and that i˚ ˝ j˚ “ id˚.
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The claim that j˚ is a homomorphism will require that πn is abelian, so consider n ě 2.
Note that the projection and inclusions induce homomorphisms, so pγ1 ˚ γ2q

x “ γx1 ˚ γ
x
2 , and

similarly for y. Explicitly computing,
j˚prγ1srγ2sq “ j˚prγ1 ˚ γ2sq

“ rpγ1 ˚ γ2q
x
˚ pγ1 ˚ γ2q

y
s

“ rγx1 ˚ γ
x
2 ˚ γ

y
1 ˚ γ

y
2 s

“ rγx1 ˚ γ
y
1 ˚ γ

x
2 ˚ γ

y
2 s

“ rγx1 ˚ γ
y
1 srγ

x
2 ˚ γ

y
2 s

“ j˚prγ1sqj˚prγ2sq

Now, to prove i˚˝j˚ “ id˚, we show a homotopy ipγx1 ˚γ
y
1 q » γ, which gives that i˚pj˚prγsq “

i˚prγ
x
1 ˚γ

y
1 sq “ rγs. Rewriting, γ “ ppxpγx1 q, pypγ

y
1 qq, and ipγx1 ˚γ

y
1 q “ ppxpγ

x
1 q, y0q˚px0, pypγ

y
1 qq,

so the explicit homotopy γ ÞÑ γx1 ˚ γ
y
1 is given by the usual reparametrizing homotopy used

to show that πn is a group. �
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