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1 Motivation and Vision: Shape Autophilia

Figure 1: Human hair forms wisps
and locks. Credits: Eden Arringspun

Figure 2: Wire bent into different
shapes. Credits: Hinterdobler.

Consider bending a piece of wire into a certain
shape. For example, we can bend it to make
a paper clip, a spiral, a helix, or we can just
keep it unbent, as a straight line segment. How
likely is the bent wire to become entangled with
similarly bent wires? In other words, what is the
propensity of that shape to become entangled?
Where does it rank in the spectrum of autophilia,
or self-attraction?

We can make this question concrete with a
laboratory experiment. Suppose we bend many
wires into identical shapes (e.g., many helices of
the same chirality, torsion, and length), place
these indistinguishable objects into a box, and
shake vigorously. If we then pull one object out
of the box, how many others will “come along for
the ride?” We could count the members of the
entangled cluster, return the cluster to the box,
vigorously shake again, and then repeat these
steps, and in this way produce a histogram of the
distributions of the cardinality of the clusters, as
one possible measure of the shape’s autophilia.

Understanding how the shape of an object in-
fluences its propensity for become entangled is a
fundamental question which is interesting in its
own right, and also has applications to diverse
fields: materials designed from nanostructures
or polymers, granular media with non-convex
grains, and engineered fibrous structures. Bio-
logical systems also harness shape autophilia. Helical strands of hair entangle to form wisps
and locks. When a fire ant colony floods, the ants entangle together to form a resilient raft.
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Figure 3: Staples as a cohesive gran-
ular medium. From Nick Gravish,
Scott V. Franklin, David L. Hu, and
Daniel I. Goldman, Physical Review
Letters, 108, 208001 (2012).

Figure 4: Fire ants entangle into
a cluster to build a raft. Credits:
David Hu and Nathan J. Mlot.r

Figure 5: The fire ant raft remains
cohesive under external stresses.
Credits: David Hu and Nathan J.
Mlot.

We would like to define measures of shape
autophilia in a manner that is on the one hand
amenable to mathematical investigation, and on
the other hand relevant to applications.

Our approach will be to carry out a purely
theoretical investigation of the definition and
properties of shape autophilia. We will inter-
act with computer scientists such as Alec Ja-
cobson (U. Toronto) to interweave this theoreti-
cal investigation with computational approaches,
including both stochastic numerical optimiza-
tion and numerical dynamics simulations, to ver-
ify and validate the theoretical findings, and
to create a stepping stone toward applications.
Finally, we will interact with experimentalists
such as Stephen Morris (U. Toronto) and Pedro
Reis (EPFL) to test the theory and simulations
against laboratory experiments.

As a first step, we propose to investigate a
generalization of the linking number between two
curves. The linking number has been classically
defined for two closed curves. In this setting, it is
always an integer value and a topological invari-
ant. Physically speaking, two closed curves will
always remain either linked, or unlinked, so long
as the shapes deform without breaking, since real
materials cannot pass through each other.

We will generalize the linking number to two
open curves. In this new setting, the linking
number is no longer a topological invariant, and
no longer restricted to the integers. Instead, the
generalized linking number will be a real number
that is geometry-dependent. At first glance, the
lack of topological invariance would make it seem
that this generalized linking number may both
less fundamental and less interesting. Yet, such
a generalization has the potential to address an
important question in the physical world. When
open curves can be smoothly moved or deformed,
without cutting and without passing through
each other, they can become more or less en-
twined, and we need a continuous measure for
this geometry-dependent entwinement between
the two open curves.

The proposed work on the linking number is
based on a preliminary (unpublished) investiga-
tion with Klint Qinami, third-year undergraduate
at Columbia University.
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2 Background: Linking Number

Our investigation naturally begins as a search for a mathematical measure of the entangle-
ment of curves in space. Due to the difficulty of the general question of an arbitrary number
of curves with arbitrary shape, we initially narrow the parameter space to the entanglement
of two closed curves. For this narrower problem there exists an elegant and simple measure,
the linking number. Intuitively, this topological invariant measures the ‘number of times’
one curve ‘loops around’ the other.

There exist different formalizations of the linking number; Renzo and Nipoti [2011]
recount Gauss’s derivation and prove its equivalence to modern perspectives. To speak of
each link component, let γ1pt1q, γ2pt2q be two closed curves in R3 that are nowhere crossing
with t1, t2 P r0, 2πs. To each point pt1, t2q can be associated a unique point on the torus T .
Define the Gauss Map Γ : TÑ S2 by

Γpt1, t2q “
γ1pt1q ´ γ2pt2q

|γ1pt1q ´ γ2pt2q|

The first formalization of the linking number, due to Gauss, is as the signed area of the
image of the Gauss map divided by area of the unit sphere. This can be expressed as

Lpγ1, γ2q “
1

4π

ż

T
Γ ¨

ˆ

BΓ

Bt1
ˆ
BΓ

Bt2

˙

dT

Figure 6: Valid projection with
linking number 1.

Figure 7: Degenerate projec-
tion.

Gauss’s method is simple to state, but practically
it is difficult to compute. We therefore shift our point
of view to the more modern knot-theory perspective
of the linking number.

This perspective is all about perspectives. Let πn
be a projection map onto the plane whose normal vec-
tor is n. Let πnpγ1, γ2q denote the projection of γ1, γ2.
Suppose the projection is non-degenerate, giving a
well-defined, oriented link diagram with over-under
crossings. For each crossing, assign ˘1 according to
the right-hand-rule. The sum of all crossings of πn is
twice the linking number.

The equivalence of the two formalizations is seen
by equating both definitions to the number of times
the torus wraps around the sphere under the Gauss
map. Since the degree of a continuous map is homo-
topy invariant, the linking number must be as well.

3 Background: other general-
izations of linking number

Various generalizations of the linking number to other
closed structures have been considered. The signed
area ratio perspective generalizes naturally to closed
higher dimensional manifolds, see, e.g., [Shonkwiler
2011]. Closed framed curves (framed knots) have a
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self-linking number that can be computed as the link-
ing number of the knot with a copy of itself displaced along the framing vectors. If the frame
is induced by the blackboard framing (normal to the blackboard) then this is called Kauf-
mann’s self-linking number.

Figure 8: Borromean rings.

The linking number describes the linking of a pair of
closed curves, but it cannot see links that are not evi-
dent pair-wise. For example, any two components of the
Borromean rings have linking number zero, but the three
curves are linked. The Milnor invariants capture such
links between three or more closed curves [Milnor 1954].

The linking number has been generalized to open
curves with fixed/prescribed endpoints, such as to n-
tangles, proper embeddings of the disjoint union of n
arcs into a 3-ball, such that endpoints of the arcs map
to 2n prescribed points on the ball’s boundary [Conway
1970]. White’s formula expresses the linking number of
two closed curves as the sum of two integrals, the twist
and writhe. The writhe of non-closed curves has been defined by either fixing their end-
points [Berger and Prior 2006] or connecting their Gaussian image of their endpoints with
a geodesic [Starostin 2005].

The winding number of a closed planar curve or surface in R3 counts the number of
times that the manifold winds around a given point. Jacobson et al. [2013] generalized
the winding number to open planar curves and open surfaces in R3, and demonstrated that
the generalization provides a foundation for numerical algorithms that can robustly process
geometric data that has noise, gaps, or holes.

Figure 9: The generalized winding number of Jacobson et al. [2013] allows for robust
numerical codes. In this example, each triangular facet in a mesh discretization of a cat (with
open bottom) is ripped off and slowly rotated in a random direction, to demonstrate that
the generalized winding number gracefully degrades. Credits: Jacobson, Kavan, Sorkine-
Hornung [2013].

4 Generalized linking number as area ratio

Gauss’s integral definition of the linking number generalizes naturally to open curves param-
eterized over the unit interval I “ r0, 1s; we simply replace the toroidal domain by the unit
square. Let γ1pt1q, γ2pt2q be two open curves in R3 that are nowhere crossing, with t1, t2 P I.
The Gauss Map Γ : I2 Ñ S2 has the same expression as before, and the generalized linking
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number is given by the ratio of the signed area of the Gaussian image to the area of the
unit sphere,

Lpγ1, γ2q “
1

4π

ż

I2

Γ ¨

ˆ

BΓ

Bt1
ˆ
BΓ

Bt2

˙

dT

In generalizing from closed to open curves, the only substantial change we have intro-
duced is that as opposed to the torus, the unit square I2 has a non-empty boundary. Unlike
the torus, the unit square may wrap around the sphere only partially, thus the area ratio
Lpγ1, γ2q is not restricted to the integers.

Let us extend the notion of degree to continuous maps such as Γ : I2 Ñ S2, where the
domain has a non-empty boundary but the co-domain has no boundary. In this setting,
the degree of the map is no longer one integer, but an integer field deg : S2 Ñ Z over the
codomain. For every point v P S2 on the codomain, the degree degpvq counts the signed
number of times that the image of Γ covers v.

Figure 10: Image of unit square
on the unit sphere. Numbers
represent degree of region.

Figure 11: Example projection
for open curves.

Furthermore, Γ maps the domain boundary BI2

onto a closed (generally self-intersecting) partition
curve δ : S Ñ S2, which partitions degpvq into
piecewise constant regions. Integrating the degree
ş

S2 degpvqdS recovers the signed area of ImpΓq. The
piecewise constant structure of degpvq demarcated by
δ has can also be interpreted from the perspective of
the linking number.

5 Generalized linking number
as expected linking number

To generalize the linking number to open curves, we
again consider projected link diagrams. However, it
no longer suffices to pick one regular point of the
Gauss map, since different non-degenerate projec-
tions can yield different linking numbers. This fol-
lows by considering the Hopf Link where a piece of
one curve is chopped off. For most projections, the
linking diagram computation of this configuration is
indistinguishable from the Hopf Link, since only in-
tersections are computationally considered in the link
diagram. However, the fact that this link is not
the Hopf Link can be determined when an intersec-
tion is missing, due to one curve projecting onto the
chopped-off portion of the other curve.

Averaging the result of these linking diagrams
over all points in the image of the Gauss map gives
the expected linking number over all projections. For
closed curves, this is just the integer linking number,
since all non-degenerate projections yield the same
linking number. For open curves, in general, the link-
ing number no longer yields an integer, and the sum of
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all intersections for each linking diagram is no longer
guaranteed to be an even number by the Jordan Curve Theorem.

Consider those projections where the endpoint of one curve and some point on the
other curve both project to the same point on the plane. Such projections form the closed
(generally self-intersecting) loop δ on the sphere. This can be seen as the image of the
boundary of the domain of the Gauss map. This boundary corresponds to the tipping point
between losing or gaining an intersection — in other words, a change in the linking number
computation. Hence this curve partitions the sphere into pieces where the linking number
is constant. Additionally, adjacent seperate regions on the sphere must differ by exactly 1

2 .

Figure 12: Left: Endpoint of one curve on top of the other curve. Right: Transition of
endpoint causing removal of intersection.

6 Gradient of linking number as area gradient

Figure 13: Area gradient of region
enclosed by partition curve.

Observe that the generalized linking number is
no longer homotopy invariant. Smooth deforma-
tions of γi vary the position of the partition curve
δ and the area of ImpΓq. Why continue along this
road if we lose topological invariance? Because
now we can deliberately change the linking num-
ber through homotopy.

This partition curve δ is fundamental for nu-
merical optimization of the linking number, since
it sections off regions with different linking num-
bers. Hence maximizing the total linking number
corresponds to increasing the area of the regions
with the largest linking number. Because these
regions are ultimately determined by the posi-
tions of curves in space, we can determine the
chain effect that moving these curves has on the
regions, and optimize curve positions to increase
the linking number by making the regions larger.
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7 Discretization and Numerical Computation

Curves in Euclidean space are readily discretized by a finite sequence of vertices (discrete
points) connected by straight line segments. If γptq : I Ñ R3 is a smooth space curve, then
partition the unit interval by points 0 “ t0 ă t1 ă ... ă tn “ 1 and consider the piecewise
linear path given by the union of all maps rtk, tk`1s ÞÑ rγptkq, γptk`1qs, where rγptkq, γptk`1qs

denotes the straight line segment connecting the two points. As the maxk |tk`1 ´ tk| of the
partition goes to zero, sufficiently smooth curves are recovered exactly.

To pick projection planes, we first approximate the unit sphere by using recursive sub-
division of the faces of a regular icosahedron for an isotropic layout. For each vertex wi of
the polyhedron, we use a change of basis matrix to get ui, vi, wi coordinates for each vertex
of the polyline, where tui, viu are an orthonormal basis for the plane normal to wi. Each
uivi plane gives a linking diagram. If numerical issues are encountered when determining
intersections of the link diagram, the computation of the linking number of this diagram is
thrown out of the averaging and the projection direction is considered degenerate. Since the
image of the critical set of a smooth map has measure zero, these degenerate projections do
not affect the average in the limit.

Figure 14: Area gradient of spheri-
cal polygon enclosed by discrete par-
tition curve.

The partition curve δ is discretized by com-
puting the normals given by the endpoint of one
curve and a vertex of the other. If γ0, γ1 are
two curves and t0, ..., tn is a partition of I, then
discrete vertices on the partition curve are

γipt0, 1uq ´ γ1´iptkq

|γipt0, 1uq ´ γ1´iptkq|

These vertices are then connected by great cir-
cles, preserving orientation, giving a spherical
loop that may self-intersect. Each closed piece
of the loop is a spherical polygon, whose area is
given by the classical angle defect formula

A “ p2´ nqπ `
ÿ

i

φi

where n is the number of vertices of the polygon
and each φi is an interior angle. This formula can be differentiated with respect to the
vertex positions of the curves in space, and this informs the numerical optimization — move
vertices to increase the interior angles.

∇A “
ÿ

i

∇φi

Since each interior angle is a function of the vertex positions of δ, which are determined by
the positions of γ0, γ1, this area gradient informs how make γ0, γ1 more or less linked.

8 Preliminary Implementation

To test our discretization and evaluate the merit of this approach, we have developed a
preliminary numerical implementation of the generalized linking number computation. Our
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preliminary test of this code considered an “Open Hopf Link,” where the one curve has a
gap. Figure 15 depicts our discretization of the Open Hopf Link. The two curves are given
by γ1ptq “ pcosptq, sinptq, 0q and γ2ptq “ p0, cosptq ` 1, sinptqq for t P r0, 2πs. The partition
width displayed is uniformly 2π{50. The link is open since γ2 is an open curve, as the final
line segment rγpt49q, γpt50qs is removed. When we visualize the image of the Gauss map for
the Open Hopf Link, the partition curve and piecewise constant degree of the map becomes
evident.

Figure 15: Left: An “Open Hopf Link” discretization. Right: Image of the Gauss map, color
coded by linking number, equivalently Gauss map degree: (black = 1, green= 3

2 , red= 1
2 ).

9 Open questions

The generalized linking number is a promising tool in tackling the general question of what
shapes are most likely to become (dis)entangled, and how to manipulate shapes (via rigid
motions, or flexible deformations) to (dis)entangle them. Questions abound:

1. Does the gradient of the generalized linking number effectively guide the process of
disentangling two curves?

2. For framed knots, we can consider the self-linking number of the knot–the linking
number of the knot with a version of itself translated infinitesimally along its frame.
This self-linking number can be generalized analogously. Does the generalized self-
linking number accurately predict the propensity of a curve to form knots?

8



3. Among all smooth curves subject to some limits (e.g., fixed length, maximum curva-
ture), which have the largest self-linking number? Given one smooth curve γ1, among
all smooth curves γ2 subject to some limits, which has the largest linking number with
respect to γ1?

4. Given two open curves with known “coarse” measurements (total length, average
curvature and curvature variance, etc.) randomly placed in the unit sphere, what is
the expected expected linking number?

5. Consider the stochastic experiment presented earlier, taking many identically shaped
curves, placing and shaking them in a box, and computing the expected clump size
through experimental trials. Can the clump size be predited using the generalized
linking number directional derivative with respect to rigid motions (translations and
rotations)?

6. What is the relationship between a curve’s propensity to entangle versus disentangle?

7. Can the generalized linking number be extended to nontrivial links like the Whitehead
link?

8. What other tools are necessary to fully characterize shape autophilia?
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