
QClang: High level quantum computation

Connor W. Abbott ∗ Klint Qinami ∗

∗ Columbia University in the City of New York, New York, NY 10027
(e-mail: cwa2112@columbia.edu, kq2129@columbia.edu).

Abstract: QClang will be a prototype higher-level language for quantum computing designed
to compile down to QASM. It includes user-defined functions, higher-level control flow, and
syntax similar to classical languages to make it easier to use for non-experts.

1. INTRODUCTION

While creating small programs in QASM is possible, large
programs can become unwieldy. Additional control and
data abstraction can allow for quick prototyping, larger
and more complex programs, and greater ease-of-use.
Towards this end, Q# is a recent high-level quantum
computing language developed by Microsoft, supporting
simple procedural programming.

This project aims to develop a new high-level program-
ming language called QClang. QClang will be an imper-
ative language supporting a small but expressive set of
built-in types, with a syntax similar to other modern high-
level languages.

2. BASICS

In addition to the builtin qubit type representing qubits,
QClang has the following built-in types:

• 32-bit integers (int)
• Classical boolean bits (bit)
• Arrays of any of these types ([])
• Tuples of any of these types (())

To prevent cloning quantum bits, QClang enforces an
affine typing constraint on the qubit type: each qubit
must be used at most once. For example, ! takes in a
qubit (or classical bit) and returns its logical inverse. !
is implemented by performing the QASM X gate on the
qubit, and then returning the original qubit. Because the
compiler ensures that the argument to ! is never used
anywhere else, no other part of the program can observe
that it has been mutated. This allows us to unify the
classical and quantum “dialects” of the language in a way
that makes sense.

Another built-in feature that takes this unification farther
is the if keyword. Used with a classical bit, if/else does
more-or-less what you’d expect. But if statements can
also have a qubit argument, in which case they perform
the appropriate controlled operation. For example, to
implement CX, one could do:

i f (c o n t r o l) {
t a r g e t = ! t a r g e t ;

}

Because controlled unitary gates preserve their control
qubit, this use of control is not counted for in the affine
typing rule. That is, we could use control somewhere else.

QClang also offers for loops, but since they are unrolled
at compile time, their length must be bounded by a
compile-time constant. Similarly, recursion depth must be
bounded.

3. EXAMPLES

While the CX gate isn’t one of the builtin gates in the
language, we could implement it as follows:

(qubit , qubit) CX(qubit cont ro l ,
qubit t a r g e t) {

i f (c o n t r o l) {
t a r g e t = ! t a r g e t ;

}

re turn cont ro l , t a r g e t ;
}

The quantum teleportation experiment can be transrcibed
as follows:

(qubit , qubit) e p r p a i r ()
{

qubit a = hadamard (0) , b = 0 ;
i f (a) {b = ! b ;}
re turn a , b ;

}

(b i t , b i t) meaure be l l (qubit a , qubit b)
{

i f (a) {b = ! b ;}
a = hadamard (a) ;
r e turn measure (a) , measure (b) ;

}

qubit t e l e p o r t (qubit a l i c e)
{

qubit shared , bob ;
shared , bob = e p r p a i r () ;
b a r r i e r () ;
b i t meas1 , meas2 ;
meas1 , meas2 = measure be l l (a l i c e ,

shared) ;
i f (meas1) { bob = ! bob ; }
i f (meas2) { bob = Z(bob) ; }
re turn bob ;

}

