
TOPOLOGY NOTES

KLINT QINAMI

Preamble. The following is a collection of exercises relating to point-set topology
and preliminary algebraic topology, together with my proofs of those exercises. Use
at your own risk.

Proposition 1. S “ p´8, aq Y pb,8q for fixed a ă b P R is open. RzS is not open.

Proof. For any point s P S, Bδpsq Ă S for δ “ min p|s´ a|, |s´ b|q. Its complement
is not open since any Bδpaq must contain points in S for all δ ą 0. �

Proposition 2. Z is not open. RzZ is open.

Proof. ZzR “
Ť

iPZ
pi, i` 1q and hence is open since arbitrary unions of open sets are

open. Z itself is not open since any nonempty, open subset of R contains rational
numbers. �

Proposition 3. Q is not open nor is RzQ.

Proof. The rationals and irrationals are dense in R. Hence, for any x P Q, Bδpxq
must contain an element in RzQ for all δ ą 0, and therefore Q is not open. Similarly,
its complement also cannot be open. �

Proposition 4. S “ t1{n � n P Z`u is not open nor is RzS.

Proof. For all s P S, Bδpsq contains irrational numbers for all δ ą 0, and hence
S cannot be open. The complement of S is also not open, since any Bδp0q must
contain some 1{n for any δ ą 0 (consider n ą 1{δ) . �

Proposition 5. fpxq “ |x| is continuous on R.

Proof. For all ε ą 0, take δ “ ε. We have that for all x0 P R, |x ´ x0| ă ε implies
|fpxq ´ fpx0q| “ ||x| ´ |x0|| ď |x´ x0| ă ε and hence f is continuous. �

Proposition 6. gpxq “

#

0 x P Q
1 x R Q

is not continuous on R.

Proof. The preimage g´1pB1{2p0qq “ Q is not open by Proposition 3. �

Proposition 7. f : R Ñ R is continuous if and only if f´1pV q is closed for any
closed V Ă R.

Proof. If f is continuous, then f´1pRzV q “ Rzf´1pV q is open and hence f´1pV q is
closed. The other direction follows similarly. �
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Proposition 8. The image of any open set is not necessarily open for a continuous
function.

Proof. Consider f : RÑ R given by fpxq “ 0. The image of any open set is t0u. �

Proposition 9. If U Ă Rm and V Ă Rn are open, then so is U ˆ V Ă Rm`n.

Proof. Given pu, vq P U ˆ V , we must have Bδ1puq Ă U and Bδ2pvq Ă V , hence
Bδ1puqˆBδ2pvq Ă UˆV . Taking δ “ minpδ1, δ2q givesBδppu, vqq Ă Bδ1puqˆBδ2pvq Ă
U ˆ V . �

Proposition 10. The open disk D1 “ tpx, yq � x
2 ` y2 ă 1u cannot be written as

the Cartesian product of two open sets U, V Ă R.

Proof. Suppose that D1 “ U ˆ V for some open U, V Ă R. Since p0,
?

2
2 q, p

?
2

2 , 0q P

U ˆ V , we must have p
?

2
2 ,

?
2

2 q P U ˆ V , but this point is not in D1. �

Proposition 11. Let S “
n
Ť

i“1
Li Ă R2 for n P N be the union of a finite number of

lines Li. RzS is open.

Proof. We proceed by induction on the number of lines. If S “ L for some line L, for
all points x P RzS, take δ to be the perpendicular distance from x to L. Otherwise,
suppose RzS is open for S “

Ťn
i“1 Li. For all x P RzS, there exists δs ą 0 such that

Bδspxq Ă RzS. For the set pRzSqzLi`1, take δ to be the minimum of δs and the
perpendicular distance to Li`1. We must have that Bδpxq Ă pRzSqzLi`1 and hence

RzS is open for S “
Ťn`1
i“1 Li. �

Proposition 12. Let X and Y be sets. A function f : X Ñ Y is continuous for
every topology T on X and every topology S on Y if and only if f is constant.

Proof. If X “ H, then f is vacuously constant. Otherwise, there exists x P X.
Consider T “ tH, Xu and S “ PpY q. If f is continuous, f´1ptfpxquq P T since
tfpxqu P S, and hence f´1ptfpxquq “ X, thus f is constant .

If f is constant, the preimage of any open set is H or X, and thus open, hence f
is continuous. �

Proposition 13. Let X be a set. T “ tU Ă X � U “ H_|XzU | P Nu is a topology
on X.

Proof. Note H, X P T . For Λ any index set, Uλ P T , we have Xz
Ť

λPΛ Uλ “
Ş

λPΛXzUλ, an intersection of finite sets, which must be finite. For finite Λ,
Xz

Ş

λPΛ Uλ “
Ť

λPΛXzUλ, a finite union of finite sets, which must be finite. �

Proposition 14. For X equipped with cofinite topology, f : X Ñ X is continuous
if and only if f´1ptxuq is finite for all x P X or f is constant.

Proof. If X “ H, the proposition follows vacuously. Otherwise, there exists x P X.
If f is continuous, since txu is closed, f´1ptxuq is closed, hence either X or finite.

If f is constant, then it is continuous. Otherwise, consider any closed V . It must
be V “

Ť

λPΛtxλu for Λ a finite index set. We have f´1pV q “ f´1p
Ť

λPΛtxλuq “
Ť

λPΛ f
´1ptxλuq, a finite union of finite sets, hence finite and closed. �
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Proposition 15. 1 in the following table indicates when the identity map is con-
tinuous for various topologies on R, 0 indicates otherwise. Map is from row label to
column label.

i : RÑ R Discrete Standard Cofinite Indiscrete
Discrete 1 1 1 1
Standard 0 1 1 1
Cofinite 0 0 1 1

Indiscrete 0 0 0 1

Proof. For any open set U , i´1pUq “ U , hence the table follows since Indiscrete Ă
Cofinite Ă Standard Ă Discrete. �

Proposition 16. Let T be subsets S Ă R such that, for all x P S, there exists
a, b P R such that x P ra, bq Ă S. T is a topology.

Proof. Note tH,Ru Ă T . For Λ any index set, Sλ P T , x P
Ť

λPΛ Sλ implies x P Sλ
for some λ P Λ. Since Sλ is open, there exist a, b such that x P ra, bq Ă Sλ Ă

Ť

λPΛ Sλ,
hence the union is open. Finally, it suffices to show the intersection of two open sets is
open, since the general case follows by induction. For open S1, S2, x P S1XS2 implies
x P ra1, b1q Ă S1 and x P ra2, b2q Ă S2. Thus x P rmaxpa1, a2q,minpb1, b2qq Ă S1XS2,
hence the intersection is open. �

Proposition 17. The standard topology on R induces the discrete topology on Z.

Proof. It suffices to show for all U P PpZq, there exists an open set V Ă R such
that U “ Z X V , since the induced topology must be coarser than PpZq. Let
V “

Ť

zPU B 1
7
pzq. V is open since it is the union of open balls, and ZX V “ U . �

Proposition 18. Identify R with tpx, 0q P R2 � x P Ru. The standard topology on
R2 induces the standard topology on R.

Proof. For all U Ă R open, there exists V Ă R2 open such that U “ V XR, namely
V “ U ˆ R, hence the induced topology is finer than the standard topology. Any
open set in the standard topology on R2 can be written as U “

Ť

λPΛBδλpxλq for
Λ some index set. We have RX U “ RX

Ť

λPΛBδλpxλq “
Ť

λPΛ RXBδλpxλq. Since
each RXBδλpxλq is either empty or an open interval, and the union of open intervals
is open in the standard topology on R, the standard topology must be finer than
the induced topology. �

Proposition 19. For pX, T q a topological space, Y a set, f : X Ñ Y any function,
S “ tU Ă Y � f´1pUq P T u is a topology on Y .

Proof. Note H, Y P S. For Λ any index set, Uλ P S, we have f´1p
Ť

λPΛ Uλq “
Ť

λPΛ f
´1pUλq P T since each f´1pUλq P T and T is closed under union. Closure

under intersection follows similarly with Λ finite. �

Proposition 20. In the product of two topological spaces Y ˆZ, a subset U is open
if and only if it can be expressed as the union

Ť

λPΛ Vλ ˆWλ for some open Vλ Ă Y
and Wλ Ă Z.
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Proof. The proposition follows since products of open sets form a basis for the
product topology, and any open set in the generated topology of a basis can be
expressed as a union of basis elements. �

Proposition 21. Let X,Y, Z be topological spaces and let Y ˆ Z have the product
topology. F “ pf1, f2q : X Ñ Y ˆ Z is continuous if and only if f1 and f2 are
continuous.

Proof. If F is continuous, for all open V Ă Y, F´1pV ˆ Zq “ f´1
1 pV q X f´1

2 pZq “

f´1
1 pV q XX “ f´1pV q is open, hence f1 is continuous. Similarly, f2 must also be

continuous.
If f1 and f2 are continuous, then for all open U Ă Y ˆ Z, we have F´1pUq “

F´1p
Ť

λPΛ VλˆWλq “
Ť

λPΛ F
´1pVλˆWλq “

Ť

λPΛ f
´1
1 pVλqXf

´1
2 pWλq is open since

the intersection of any two open sets is open, and an arbitrary union of open sets is
open. �

Proposition 22. R` “ tx P R � x ą 0u with the subspace topology from R is
homeomorphic to R.

Proof. We use f : RÑ R` given by fpxq “ ex with continuous inverse f´1 “ lnpxq
as our homeomorphism. �

Proposition 23. Let S “ tpx, yq P R2 � x2 ` y2 “ 1u equipped with the subspace
topology. R2zt0u with subspace topology is homeomorphic to Rˆ S with the product
topology.

Proof. Let f1 : R2zt0u Ñ R be given by f1px, yq “ ln
´

a

x2 ` y2
¯

. Let f2 :

R2zt0u Ñ S be given by f2px, yq “
´

x{
a

x2 ` y2, y{
a

x2 ` y2
¯

. Let g “ pf1, f2q.

We know from analysis f1 and f2 are continuous, hence by Proposition 3, g is also
continuous. g´1pw, u, vq “ pewu, ewvq is also continuous, hence we have a homeo-
morphism. �

Proposition 24. For u,v P R2, define

dpu,vq “

#

}u´ v} if u “ tv for some t P R
}u} ` }v} otherwise

d is a metric, but does not induce the standard topology.

Proof. Note dpu,vq ě 0 and dpu,vq “ 0 implies u “ v and dpu,vq “ dpv,uq for all
u,v. If x “ ty “ rz for some t, r P R, then dpx, zq ď dpx,yq`dpy, zq since }x´z} ď
}x ´ y} ` }y ´ z}. If t exists but r does not, then still dpx, zq ď dpx,yq ` dpy, zq
since }x}`}z} ď }x´y}`}y}`}z}. The other case where r exists but t does not is
similar. If all points lie on different railway tracks, then dpx, zq ď dpx,yq ` dpy, zq
since }x} ` }z} ď }x} ` }y} ` }y} ` }z}.

The metric topology on R2 induced by d is not the standard topology, however,
since B1p0, 1q is a line segment in the metric topology, which is not open in the
standard topology. �
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Proposition 25. The topology tta, bu, tau,Hu on ta, bu cannot come from any met-
ric.

Proof. We note this space is not Hausdorff since the points a and b do not have
disjoint neighborhoods. �

Proposition 26. The metric topology on any finite set is the discrete topology.

Proof. Each singleton set must be open for each point to have a disjoint neighbor-
hood with all other points. Since the singletons generate the discrete topology, we
are done. �

Proposition 27. For u,v P Rn, define

d1pu,vq “
n
ÿ

i“1

|ui ´ vi|

d’ is a metric inducing the standard topology.

Proof. Note d1pu,vq ě 0 and d1pu,vq “ 0 implies u “ v and d1pu,vq “ d1pv,uq
for all u,v. Additionally, d1px, zq “

řn
i“1 |xi ´ zi| “

řn
i“1 |xi ´ yi ` yi ´ zi| ď

řn
i“1 |xi ´ yi| `

řn
i“1 |yi ´ zi| “ d1px,yq ` d1py, zq.

Let S be the set of basis elements for the standard topology and let T be the set of
basis elements for the topology induced by d1. For Bδ,d1pxq P T , note S Q Bδ{?npxq Ă
Bδ,d1pxq by Cauchy-Schwartz. Similarly, for Bδpxq, we have Bδ,d1pxq Ă Bδpxq. Hence,
each topology is finer than the other, and thus they must be equal. �

Proposition 28. Let X,Y be topological spaces, A Ă X, B Ă Y . Then for X ˆ Y
with the product topology, AˆB “ AˆB.

Proof. pĄq Let pa, bq P A ˆ B, W Ă X ˆ Y open, pa, bq P W . Consider a basis
element U ˆ V Ă W with a P U , b P V . Since a P A and b P B, U X A ‰ H and
V X B ‰ H. Hence U ˆ V X A ˆ B ‰ H, so pa, bq P AˆB. pĂq A ˆ B Ă A ˆ B

implies AˆB Ă AˆB “ AˆB. �

Proposition 29. Let a ă b ă c ă d ă e, all in R. Then no two of A X B,A X
B,AXB,AXB,AXB are equal for A “ pa, cq Y pd, eq and B “ ra, bq Y tdu.

Proof. Explicitly computing gives

AXB “ pa, bq

AXB “ ra, bq Y tdu

AXB “ pa, bs

AXB “ ra, bs

AXB “ ra, bs Y tdu

�

Proposition 30. If X is Hausdorff, then txu is closed for all x P X.
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Proof. For all y P Xztxu, theres exists an open neighborhood Bpyq such that y P
Bpyq but x R Bpyq, so Xztxu “

Ť

yPXztxuBpyq is open, hence txu is closed. �

Proposition 31. X is Hausdorff if and only if the diagonal ∆ “ tpx, xq � x P Xu Ă
X ˆX is closed.

Proof. p ùñ q If distinct points x, y have disjoint neighborhoods U, V , then XˆXz∆
is open since px, yq P U ˆ V and U ˆ V X ∆ “ H since U, V are disjoint. p ðù q
XˆXz∆ open implies for all px, yq, there exists open W s.t. px, yq PW Ă XˆXz∆.
Since W is open in the product topology, there exist U, V open s.t. px, yq P U ˆV Ă
W . W X∆ “ H implies U and V are disjoint, hence X is Hausdorff. �

Proposition 32. Let f : X Ñ Y be continuous, C Ă Y closed, and D Ă X dense.
Then fpDq Ă C implies fpXq Ă C.

Proof. f continuous implies f´1pY zCq is open. If f´1pY zCq is nonempty, then
there exists d P f´1pY zCq XD since D is dense, and fpdq R C, a contradiction to
fpDq Ă C. Hence f´1pY zCq is empty, so fpXq Ă C. �

Proposition 33. Let X,Y be topological spaces with Y Hausdorff. Let f, g : X Ñ Y
be continuous functions. If D Ă X is dense and f |D “ g|D, then f “ g.

Proof. Consider h : X Ñ Y ˆ Y given by hpxq “ pfpxq, gpxqq. Since f, g are
continuous, h is continuous. By Proposition 4, Y is Hausdorff implies ∆ is closed.
f |D “ g|D gives hpDq Ă ∆, so hpXq Ă ∆ by Proposition 32. Hence f “ g. �

Proposition 34. For X a topological space, A Ă X a subset, A has no limit points
in itself if and only if the subspace topology on A is discrete.

Proof. p ùñ q For all a P A, a not a limit point of A implies there is an open
neighborhood U Q a such that U X A “ tau, hence tau is open in the subspace
topology. Since singletons generate the discrete topology, we’re done. p ðù q

Subspace topology being discrete implies that for all a P A, there exists U open in
X such that U XA “ tau, hence a is not a limit point of A. �

Proposition 35. Let S “ t1{n � n P Z`u Ă R with the standard topology. S has
discrete subspace topology and a limit point outside itself.

Proof. Given n P Z`, let δ “ 1
npn`1q . Then Bδp1{nq X S “ t1{nu, so the subspace

topology on S is discrete. But any Bδp0q contains some 1{n for n ą 1{δ, so 0 is a
limit point of S, yet 0 R S. �

Proposition 36. Let X,Y be topological spaces. Let V1 and V2 be open subsets
of X s.t. V1 Y V2 “ X. Let f1 : V1 Ñ Y and f2 : V2 Ñ Y be functions s.t.
f1|V1XV2 “ f2|V1XV2. Then f : X Ñ Y given by

fpxq “

#

f1pxq x P V1

f2pxq x P V2

is continuous if and only if both f1 and f2 are continuous.
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Proof. Since f1|V1XV2 “ f2|V1XV2 , f is well defined. If f is continuous, then for any

open U Ă Y , we have f´1
1 pUq “ pf |V1q

´1
pUq “ V1 X f´1pUq, an intersection of

open sets, and thus open. Hence f1 must be continuous. Continuity of f2 follows
similarly.

If f1 and f2 are continuous, then for any open U Ă Y , we have f´1pUq “

pf |Xq
´1 “ pf |V1YV2q

´1 “ pf |V1q
´1
pUq Y pf |V2q

´1
pUq “ f´1

1 pUq Y f´1
2 pUq, a union

of two open sets, and hence open. Thus f is continuous. �

Proposition 37. Let tAn|n P Nu be a sequence of connected subsets of X such that
for each n, An XAn`1 ‰ H. Then

Ť8
n“0An “ S is connected.

Proof. Let U Ă S be nonempty, clopen. Then there exists i P N s.t. Ai X U ‰ H.
Since Ai is connected and Ai X U is a nonempty clopen subset of Ai, we have
Ai “ Ai X U and hence Ai Ă U . Then Ai´1 X U ‰ H and Ai`1 X U ‰ H. By the
same reasoning, Ai´1 Ă U and Ai`1 Ă U . By induction both ways, it follows that
for all i P N, Ai Ă U . Hence S Ă U , and thus S “ U . �

Proposition 38. If A Ă X, let the boundary of A be BdA “ AzA˝, the closure
minus the interior. X is connected if and only if every proper nonempty subset has
nonempty boundary.

Proof. If BdA “ AzA˝ “ H, then A Ă A˝, giving A “ A “ A˝ since A˝ Ă A Ă A,
implying A is clopen. If X is connected, then any proper, nonempty subset is not
clopen, hence its boundary is nonempty.

If every proper, nonempty subset A has nonempty boundary, then A ‰ A˝,
and hence A is not clopen, so the only clopen subsets are X and H, hence X is
connected. �

Proposition 39. No two of p0, 1q, p0, 1s, r0, 1s are homeomorphic.

Proof. By Heine-Borel, r0, 1s is compact and p0, 1q, p0, 1s are not compact. Hence
r0, 1s cannot be homeomorphic to either of the other two sets since the image of a
compact set under a continuous function is compact.

Suppose f : p0, 1s Ñ p0, 1q is a homeomorphism. Since f is injective, fpp0, 1szt1uq “
fpp0, 1sqztfp1qu. Since f is surjective, fpp0, 1sqztfp1qu “ p0, 1qztfp1qu. f contin-
uous implies fpp0, 1qq “ p0, 1qztfp1qu is connected. But p0, fp1qq Y pfp1q, 1q “
p0, 1qztfp1qu and p0, fp1qq X pfp1q, 1q “ H, so fpp0, 1qq is not connected, a contra-
diction. �

Proposition 40. Rnzt0u is connected.

Proof. For x “ px1, x2, . . . , xnq P Rn, let π1pxq “ x1. Let U “ tx P Rnzt0u � π1pxq ă
0u and V “ tx P Rnzt0u � π1pxq ą 0u. U and V are convex, and thus connected.
This implies their closures are connected. Since U and V are not disjoint, the union
U Y V “ Rnzt0u is connected. �

Proposition 41. R is not homeomorphic to Rn for n ą 0.

Proof. We proceed as in Proposition 39. Suppose f : Rn Ñ R is a homeomor-
phism. Then fpRnzt0uq “ fpRnqztfp0qu “ Rztfp0qu is connected by Proposition
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40. But p´8, fp0qq Y pfp0q,8q “ Rztfp0qu and p´8, fp0qq X pfp0q,8q “ H, a
contradiction. �

Proposition 42. The cardinality of the set of lines through any point in R2 is at
least uncountable.

Proof. For any point x “ px0, y0q P R2, let L “ tm “
y´y0
x´x0

� m P Ru. Since R is
uncountable, L is uncountable. But every line in L passes through x, so the number
of lines passing through x must be at least as large in cardinality as L. �

Proposition 43. The complement of any countable set in R2 is path-connected,
and hence connected.

Proof. Consider a countable set S Ă R2 and any two points x, y in R2zS. Let Lx and
Ly denote the set of all lines passing through x and y respectively. By Proposition
42, these sets are at least uncountable.

Let Lcx “ tm “
y1´y0
x1´x0

� px0, y0q “ x, px1, y1q P Su be the set of lines in Lx passing
through a point in S. Define Lcy similarly. Since S is countable, Lcx and Lcy are
countable. Hence LxzL

c
x and LyzL

c
y are at least uncountable. Let L1 be a line in

LxzL
c
x with slope m1. Since LyzL

c
y is uncountable, we can find L2 in LyzL

c
y with

slope m2 ‰ m1. Therefore L1 and L2 intersect by the parallel postulate. Let xc
denote the point of intersection. Then γ : r0, 1s Ñ R2 given by

γptq “

#

p1´ 2tqx` 2txc t P r0, 1
2 s

2p1´ tqxc ` p2t´ 1qy t P r12 , 1s

is a continuous function by the gluing lemma, with γp0q “ x and γp1q “ y, hence a
path from x to y. Additionally, γpr0, 1sq X S “ H since γpr0, 1

2 sq Ă L1 P LxzL
c
x and

γpr12 , 1sq Ă L2 P LyzL
c
y. Therefore the complement of S in R2 is path-connected. �

Proposition 44. Any open connected A Ă Rn is path-connected.

Proof. If A “ H, then it is vacuously path connected. Otherwise, there exists
x0 P A. Let P denote the set of points in A path connected to x0. Since x0 P P , P
is nonempty.

Consider any x P P and let γ1 denote the path from x0 to x. Since A is open,
there exists δ ą 0 s.t. Bδpxq Ă A. For any y P Bδpxq, let γ2ptq “ p1´ tqx` ty. By
the triangle inequality, γ2pr0, 1sq Ă Bδpxq Ă A. Then

γptq “

#

γ1p2tq t P r0, 1
2 s

γ2p2t´ 1q t P r12 , 1s

is a path in A from x0 to y, hence Bδpxq Ă P and P is open.
Now consider a point not path connected to x0, that is x P AzP . Since A is open

again there exists δ ą 0 s.t. Bδpxq Ă A. Suppose there were a path γ1 from x0 to
y P Bδpxq. Then compose this path again as before with a path from y to x. This
is a path from x0 to x, a contradiction. Hence y is also not path connected to x0,
and Bδpxq Ă AzP , hence P is clopen. Since P is a nonempty clopen subset of A,
P “ A, and hence A is path connected since x0 was arbitrary. �
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Proposition 45. Let S, T be two topologies on X with S Ă T . If X is compact
under T , it is compact under S. However, if X is compact under S, it is not
necessarily compact under T .

Proof. ( ùñ ) Let
Ť

λPΛ Uλ be an open cover of X under S, that is, with Uλ P S
for all λ. Since S Ă T , Uλ is also open in T for all λ, and hence the open cover of
X under S is also an open cover under T . But X is compact in T , and thus there
exists a finite subcover

Ť

λPΛ1 Uλ with Λ1 Ă Λ finite. This finite subcover under T is
also a finite subcover under S, since all Uλ P S, and hence X is compact under S.
p ðù q Consider any set X compact under S. Let T “ PpXq. We have S Ă T ,

but X cannot be compact under T , since an open cover by singletons has no finite
subcover. �

Proposition 46. If X is compact Hausdorff under both S and T with S Ă T , then
S “ T .

Proof. Let XS denote X under S and let XT denote X under T . Consider the
identity map i : XT Ñ XS given by ipxq “ x. The preimage of any open set U
under the map is itself. Because T is finer than S, U must be open in the domain,
and hence i is continuous. Since i is a bijection and the domain is compact and the
range is Hausdorff, i must be a homeomorphism, and in particular, its inverse i´1

must be continuous. This implies T Ă S, and thus S “ T . �

Proposition 47. Any topological space X with the cofinite topology is compact.

Proof. If X is empty, it is vacuously compact. Otherwise, let
Ť

λPΛ Uλ be an open
cover of X. Since X is nonempty, there exists a nonempty Uλ0 for some λ0 P Λ.
Uλ0 nonempty and open in the cofinite topology implies XzUλ0 is finite. For all
x P XzUλ0 , let Ux denote any Uλ in the open cover containing x. There must exist
at least one such set for all x by the definition of cover. Then Uλ0 Y

Ť

xPXzUλ0
Ux is

a finite subcover of X, hence X is compact. �

Proposition 48. Let the cocountable topology on R be the topology under which
U Ă R is open if and only if either U “ H or RzU is countable. Then R under the
cocountable topology is not compact.

Proof. Consider
Ť

nPNRzN Y tnu. Each RzN Y tn0u with n0 P N is open since
its complement, Nztn0u, is countable. Additionally, for all x P R, if x P RzN,
x P RzN Y t0u. If x “ n0 for some n0 P N, then x P RzN Y tn0u. Hence the
union is an open cover of R under the cocountable topology. However, no proper
subcollection of the open cover is a cover, since if any RzN Y tn0u is missing for
some n0 P N, then n0 is missing from the cover. Since this open cover has no finite
subcover, R is not compact under this topology. �

Proposition 49. Let tAn|n P Nu be a countable family of compact, connected sub-
sets of a Hausdorff space X such that An Ą An`1 for all n P N. Let A “

Ş

nPNAn.
A is nonempty if and only if each An is nonempty.

Proof. ( ùñ ) If An0 is empty for some n0 P N, then A “
Ş

nPNAn Ă An0 “ H

implies A “ H.
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( ðù ) Suppose for a contradiction that An is nonempty for all n P N but A is
empty. Consider U “

Ť

nPNzt0uA0zAn.

Since each An is compact and X is Hausdorff, each An is closed in X. Addi-
tionally, each An Ă A0 for all n ą 0 by induction, so they must be closed in the
subspace topology on A0, thus their complements A0zAn must be open in the sub-
space topology on A0. A empty implies U must be a cover of A0 because if x P A0

but x R A0zAn for all n ą 0 P N, then x P An for all n ą 0. But since x P A0 and
x P An for all n ą 0, x P A, a contradiction to A “ H. Thus U is an open cover of
A0.
A0 compact implies U admits a finite subcover

Ť

nPΛA0zAn with Λ Ă Nzt0u finite.
Since each An Ą An`1, A0zAn Ă A0zAn`1. Since Λ is a nonempty, finite subset of
N, it contains a maximal element N . By induction, A0zAN Ą

Ť

nPΛA0zAn. But
this gives A0zAN Ą A0, which implies AN “ H since AN Ă A0, a contradiction.
Hence A cannot be empty. �

Proposition 50. Let tAn|n P Nu be a countable family of compact, connected sub-
sets of a Hausdorff space X such that An Ą An`1 for all n P N. Let A “

Ş

nPNAn.
A is compact.

Proof. Since each An is compact and X is Hausdorff, each An is closed and hence
A is closed, since it is an intersection of closed sets. Because A is a closed subset
of A0 compact, it is compact in the subspace topology on A0, hence compact in X,
since the topology induced on A by A0 is the same as the topology induced on A
by X. �

Proposition 51. Let tAn|n P Nu be a countable family of compact, connected sub-
sets of a Hausdorff space X such that An Ą An`1 for all n P N. Let A “

Ş

nPNAn.
A is connected.

Proof. Suppose for a contradiction A is not connected. Then A “ C Y D with
C,D clopen, disjoint, and nonempty. Since C and D are closed in A compact and
closed, C and D are compact in A, and hence X by the argument in the proof
of Proposition 50. X Hausdorff implies there exist disjoint, open U, V Ă X
containing C and D respectively.

Since A Ă C Y D Ă U Y V , AzpU Y V q “ H. Rewriting, AzpU Y V q “
p
Ş

nPNAnq z pU Y V q “
Ş

nPN pAnz pU Y V qq. Since An Ą An`1 for all n P N, we
have AnzpU Y V q Ą An`1zpU Y V q for all n P N. Additionally, AnzpU Y V q “
An X pXzpU Y V qq for all n P N, an intersection of closed sets, hence closed. Thus
AnzpU Y V q are closed subsets of An compact, hence also compact for all n P N.

Since we have a family of nested, compact subsets with an empty intersection,
by Proposition 49, it must be that An0zpU Y V q “ H for some n0 P N, and thus
An0 Ă U Y V . Note A X C ‰ H implies An0 X U ‰ H and A X D ‰ H implies
An0 X V ‰ H. Since An0 XU and An0 X V are nonempty, disjoint clopen subsets of
An0 that cover An0 , An0 cannot be connected, a contradiction. �

Proposition 52. Let X,Y be topological spaces with Y compact. Then the projec-
tion π : X ˆ Y Ñ X is closed.
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Proof. Suppose for a contradiction C Ă XˆY is closed but πpCq is not closed. Then
πpCq has a limit point x0 outside of itself. π´1ptx0uq “ tx0uˆY must be contained
in the complement of C closed, thus for every x “ px0, yq P π

´1ptx0uq, we have a
basic neighborhood UpyqˆV pyq of x contained in the complement of C.

Ť

yPY V pyq
is an open cover of Y and thus admits a finite subcover since Y is compact. Letting
Λ index the finite subcover, we consider U “

Ş

yPΛ Upyq, an open set since Λ is finite.

C is nonempty since πpCq is not closed, so consider pc1, c2q P C. If U intersects1

πpCq at some point x1, we have px1, c2q P Upc2q ˆ V pc2q and px1, c2q P C. But the
Upyq ˆ V pyq were chosen to miss C, so U misses πpCq, yet there cannot be an open

neighborhood of x0 missing πpCq since x0 P πpCq. �

Proposition 53. Every closed subset of a countably compact space is countably
compact.

Proof. The proof is exactly similar to the proof of closed subsets of compact spaces
being compact, replacing each instance of ‘open cover’ with ‘countable open cover’
in the proof. �

Proposition 54. Let A be a subset of a T1 space X. If x is a limit point of A, then
every open neighborhood of x contains infinitely many points of A.

Proof. Let U be an open neighborhood of x and suppose U X A is finite. Then
pU X Aqztxu is closed, since it is finite and X is T1. Then XzppU X Aqztxuq “
txu YXzpU X Aq is open, and ptxu YXzpU X Aqq X U is an open neighborhood of
x not intersecting A at any point other than x, but x is a limit point of A. �

Proposition 55. A T1 space X is countably compact if and only if it is limit point
compact.

Proof. ( ùñ ) Suppose there exists an infinite subset B of X with no limit points.
Let A be a countable subset of B, which again cannot have any limit points. By
Proposition 34, the subspace topology on A is discrete. Hence

Ť

aPAtau is a
countable open cover of A with no finite subcover, so A cannot be countably com-
pact. Since A has no limit points, it contains all of its limit points, and thus is
closed. A closed but not countably compact implies X is not countably compact by
Proposition 53.

( ðù ) Let
Ť8
i“0 Ui be a countable open cover of X. If no finite subcollection

covers X, let xn be a point not in U0 Y . . . Y Un´1 and let Un in the cover contain
xn. Let A “

Ť

iPNtxiu. Note that for all i P N, Ui X A must be finite, since Ui
cannot contain any xn for n ą i. Since the Ui cover X, all points in X have an open
neighborhood which intersects A finitely many times, so no point can be a limit
point of A by Proposition 54. �

Proposition 56. Let X be a metric space. For nonempty A,B Ă X, define
dpA,Bq “ inftdpx, yq|x P A, y P Bu. Also define for all x P X, dpx,Aq “ dptxu, Aq.
For x P X, dpx,Aq “ 0 if and only if x P A.

1If U X V “ H, then U misses V . If U X V ‰ H, then U intersects V .
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Proof. ( ùñ ) By the approximation property of the infimum, for all δ ą 0, there
exists a P A such that 0 ď dpx, aq ă δ. Then for all δ ą 0, Bδpxq X A is nonempty,
so x P A.
p ðù q x P A implies for all δ ą 0, Bδpxq X A is nonempty. Then for all δ ą 0

there exists a P A such that dpx, aq ă δ, so dpx,Aq “ 0 since it is a nonnegative
number less than all δ ą 0. �

Proposition 57. Let X be a metric space. If A is compact, then dpx,Aq “ dpx, aq
for some a P A.

Proof. Define dx : A Ñ R to be dpx, aq for all a P A. dx is continuous since the
inverse image of any basic open interval pa, bq is pBbpxqzCapxqq X A, open in the
subspace topology on A. Since d is a continuous function from a compact set to R,
the infimum is in the image of d by the extreme value theorem, but the infimum is
dpx,Aq. �

Proposition 58. Let X be a metric space. Define BδpAq “ tx P X|dpx,Aq ă δu.
Then BδpAq “

Ť

aPABδpaq.

Proof. pĂq x P BδpAq implies dpx,Aq ă δ, which by the approximation property of
the infimum means there exists a0 P A such that dpx,Aq ď dpx, a0q ă δ so x P Bδpa0q

and hence x P
Ť

aPABδpaq.
pĄq x P

Ť

aPABδpaq implies x P Bδpa0q for some a0 P A, and dpx, a0q ă δ implies
dpx,Aq ă δ and hence x P BδpAq. �

Proposition 59. Let X be a metric space. Suppose A is compact and U Ă X is an
open set containing A. Then there exists δ ą 0 such that BδpAq Ă U .

Proof. If U “ X, then any δ ą 0 will suffice. Otherwise, let dXzU : A Ñ R be
given by dpa,XzUq for all a P A. For two points a1, a2, we have dpa1, XzUq “
infxPXzU dpa1, xq ď infxPXzU dpa1, a2q` dpa2, xq “ dpa1, a2q` dpa2, XzUq. Therefore
|dpa1, XzUq ´ dpa2, XzUq| ď dpa1, a2q. Hence for all ε ą 0, dpa1, a2q ă ε implies
|dXzU pa1q ´ dXzU pa2q| ă ε, thus dXzU is continuous.

Since dXzU is a continuous function with a compact domain, it attains its min-
imum for some am P A. Since A is a compact subset of a Hausdorff space, it is
closed, and hence dXzU pamq “ δ ą 0 since XzU cannot contain points in the closure
of A. Hence

Ť

aPABdXzU pamqpaq “ BdXzU pamqpAq Ă U . �

Proposition 60. Let X be a metric space. Let A “ tpx, yq|y ď 0u be the lower
halfplane of R2. Let U “ tpx, yq|px, yq ă px, exqu. Then there exists no δ ą 0 such
that BδpDq Ă U .

Proof. A is closed since its complement R ˆ p0,8q is open. Suppose there exists
δ ą 0 such that BδpAq “

Ť

aPABδpaq does not intersect XzU . Then for all a “
pa1, 0q P A, pa1, e

a1q R Bδpa1, 0q. But dppa1, e
a1q, pa1, 0qq “ ea1 , which is less than δ

for a1 ă ln δ. �

Proposition 61. Let X be a metric space. Let f : X Ñ X be an isometry and X
be compact. f is surjective.
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Proof. f is continuous and injective as was shown on the midterm. Suppose for a
contradiction a R fpXq for some a P X. Since X is compact and f is continuous,
fpXq is compact. Since X is a metric space, it is Hausdorff, thus fpXq is closed.
Hence a P XzfpXq implies there exists ε ą 0 such that Bεpaq misses fpXq. Define
a sequence inductively by x0 “ a and xn`1 “ fpxnq. Since Bεpaq misses fpXq,
dpx0, xiq ě ε for all i ą 0. Also, dpxi, xi`1q “ dpfpxiq, fpxi`1qq “ dpxi`1, xi`2q.
For any m ă n, dpx0, xn´mq ě ε implies dpfmpx0q, f

mpxn´mqq “ dpxm, xnq ě ε by
induction.

If X is finite, f is surjective since it is injective, so assume X is infinite. Addition-
ally, xn ‰ xm for m ‰ n, since otherwise if m ‰ n and xn “ xm, then xn´1 “ xm´1

since f is injective. But then by induction x0 “ xi for some i ą 0, which cannot
be since x0 “ a R fpXq. Therefore the sequence must be infinite. X compact im-
plies this sequence has a limit point x. By Proposition 54, Bε{2pxq intersects the
sequence at infinitely many points. But if xn and xm are contained in Bε{2pxq for
n ‰ m, then dpxn, xmq ď dpxn, xq ` dpxm, xq ă ε{2` ε{2 “ ε, a contradiction. �

Proposition 62. Let X be a metric space. Let f : X Ñ X be an isometry and X
be compact. f is a homeomorphism.

Proof. Since f is a continuous bijection from a compact space to a Hausdorff space,
it is a homemorphism. �

Proposition 63. Let X be a metric space. Let f : X Ñ X be a contraction and X
compact. f is continuous.

Proof. For all ε ą 0, dpx, yq ă ε implies dpfpxq, fpyqq ď cdpx, yq ă cε ă ε. �

Proposition 64. Let X be a metric space. Let f : X Ñ X be a contraction and X
compact. If X is nonempty, then f has exactly one fixed point.

Proof. X nonempty implies fnpXq is nonempty for all n P N by induction2. f
continuous and X compact implies fnpXq is compact for all n P N. X Ą fpXq
also implies fnpXq Ą fn`1pXq by applying f to both sets and using induction.
Therefore we have a countable family of nested compact sets which are all nonempty
and subsets of a Hausdorff space. By Proposition 49 and Proposition 50, A “
Ş

nPN f
npXq is nonempty and compact.

Let x be any point in A. Then for all n P N, there exists xn such that x “ fnpxnq.
Hence dpx, fpxqq “ dpfnpxnq, f

n`1pxnqq ď cndpxn, fpxnqq by induction. A compact
in a metric space implies there exists δ ą 0, x P X such that Bδpxq Ą A, so
dpxn, fpxnqq ă δ. This gives dpx, fpxqq ď cnδ for all n P N, so dpx, fpxqq “ 0. Hence
x “ fpxq. Thus every point in A is a fixed point of f and there must be at least
one such point.

Let x and y be two fixed points of f . Then dpfpxq, fpyqq ď cdpx, yq so dpx, yq ď
cdpx, yq and p1 ´ cqdpx, yq ď 0. Since c ă 1 and is nonnegative, dpx, yq “ 0 and
hence x “ y. Hence a fixed point of f exists and is unique. �

2fnpXq denotes n-fold composition of f
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Proposition 65.
Ť

nPNp
1

2n`2 ,
1

2n q is an open cover of p0, 1q where the Lebesgue Num-
ber Lemma fails.

Proof. We have shown already in class that this is an open cover. Suppose there
exists δ ą 0 such that every subset A Ă Bδpxq for some x P p0, 1q is contained in
some set of the open cover. For all δ ą 0, there exists N P N such that for all n ą N ,
ˇ

ˇ

1
2n`2 ´

1
2n

ˇ

ˇ ă δ. Then Bδp
1

2n`1 `
1

2n`3 q is not contained in p 1
2n`2 ,

1
2n q. But since it

contains 1
2n`1 and p 1

2n`2 ,
1

2n q is the only set in the cover containing 1
2n`1 , it cannot

be contained in any other set of the open cover, a contradiction. �

Proposition 66. The 1-point compactification pR of R is homemorphic to the unit
circle S1.

Proof. Let f : R Ñ S1ztp0, 1qu be given by fptq “
´

2t
t2`1

, t
2´1
t2`1

¯

. t2 ` 1 ą 0 for all

t P R, so the rational coordinate functions are continuous, thus f is continuous by
Proposition 21.

Let g : S1ztp0, 1qu Ñ R be gpu, vq “ u
1´v . p1 ´ vq ‰ 0 for all pu, vq P S1ztp0, 1qu,

so g has continuous partial derivatives, and thus is diffentiable, hence continuous.

pg ˝ fqptq “
´

2t
t2`1

¯

L

´

1´ t2´1
t2`1

¯

“

´

2t
t2`1

¯

L

´

2
t2`1

¯

“ t.

pf ˝ gqpu, vq “
´´

2u
1´v

¯

L

´

1` u2

p1´vq2

¯

,
´

u2

p1´vq2
´ 1

¯

L

´

u2

p1´vq2
` 1

¯¯

“

´

2up1´vq
u2`v2`1´2v

, u
2´p1´vq2

u2`p1´vq2

¯

“

´

2up1´vq
2´2v , u

2`v2´1`2v´2v2

2´2v

¯

“ pu, vq

Since f has a double sided inverse, it is a bijection. It is also continuous, and

its inverse is continuous, so it is a homemorphism. R » S1ztp0, 1qu implies pR » S1

since S1 is compact and Hausdorff and R is locally compact and Hausdorff and
noncompact. �

Proposition 67. D dense in X and U nonempty, open in X implies D X U “ U .

Proof. pĂq D X U Ă U implies D X U Ă U . pĄq Let V be any open neighborhood
of x P U . Then V X U is nonempty by definition of closure and open since it is the
intersection of two open sets. D dense in X implies D X pV X Uq is nonempty, so
V X pD X Uq is nonempty, hence x P D X U . �

Proposition 68. No compact subset of Q contains pa, bq XQ for any a ă b P R.

Proof. Suppose for a contradiction A compact in Q and Q X pa, bq Ă A for some
a ă b P R. A compact in Q implies A compact in R since the inclusion map
is continuous. A compact in R Hausdorff implies A “ A. Q dense in R implies
QX pa, bq “ ra, bs by Proposition 67. Hence Q X pa, bq Ă A implies ra, bs Ă A, a
contradiction since ra, bs Ć Q but A Ă Q. �

Proposition 69. Q is not locally compact.

Proof. Let U XQ be an open neighborhood of q P Q. U open in the metric topology
on R implies U XQ “

Ť

λPΛpaλ, bλqXQ. By Proposition 68, any compact set in Q
does not contain any paλ, bλq XQ for any λ. Hence no compact set contains U XQ,
so q does not have a compact neighborhood. �
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Proposition 70. f : RÑ R continuous, then

p1q lim
xÑ8

|fpxq| “ 8 ùñ p2q lim
xÑ8

fpxq “ ˘8

p3q lim
xÑ´8

|fpxq| “ 8 ùñ p4q lim
xÑ´8

fpxq “ ˘8

Proof. If not p2q, then DM,M 1 P R,@N P R, Dx, x1 P R, px ą N ^ fpxq ă M ^ x1 ą
N^fpx1q ąM 1q. Let M2 “ minpM´1,M 1q. Then @N P R, Dx P R, px ą N^fpxq ą
M2q since M2 ď M 1. By the Intermediate Value Theorem, @N P R, Dx2 P R, px2 ą
N ^ pM2 ă fpx2q ă Mqq. M2 ă fpx2q ă M implies |fpx2q| ă maxp|M |, |M2|q,

since ´fpx2q ă ´M2 ď |M2| and fpxq ă M ď |M |. Let ĂM “ maxp|M |, |M2|q.

Then @N P R, Dx P R, px ą N ^ |fpxq| ă ĂMq, so not (1). The proof of not p4q
implies not p3q is similar. �

Proposition 71. f : RÑ R continuous is proper if and only if p2q and p4q.

Proof. ( ùñ ) If not p2q, then DM P R,@N P R, Dx P R, px ą N ^ |fpxq| ă Mq
by Proposition 70. Then @N P R, Dx P R, px ą N ^ x P f´1pr´M,M sqq, so
f´1pr´M,M sq is unbounded, hence not compact by Heine-Borel. Since r´M,M s is
compact but f´1pr´M,M sq is not, f is not proper. The proof of not p4q implies f
is not proper is similar.

( ðù ) Since f is continuous, the inverse image of closed sets is closed. Let C Ă R
be bounded, thus contained in Bδp0q for some δ ą 0. p2q implies DN P R,@x P
R, px ą N ùñ fpxq ą δq. If f´1pCq unbounded above, then @M P R, Dx P R, px ą
M ^x P f´1pCqq. Let M “ N . Then Dx P R, px ą N ^x P f´1pCq^ fpxq ą δq, but
fpCq Ă Bδp0q, a contradiction, so f´1pCq is bounded above. A similar argument
shows f´1pCq is bounded below using p4q. Since the inverse image of closed and
bounded sets is closed and bounded, by Heine-Borel, the inverse image of compact
sets is compact, so f is proper. �

Proposition 72. Nonconstant polynomial functions p : RÑ R are proper.

Proof. From analysis we know nonconstant polynomial functions from R Ñ R are
continuous and satisfy p2q and p4q, hence by Proposition 71, are proper. �

Proposition 73. For X, Y Hausdorff, continuous f : X Ñ Y is proper if and only

if pf : pX Ñ pY given by

pfpxq “

#

fpxq x P X

8 x “ 8

is continuous.

Proof. p ùñ q Let U be open in pY . If 8 R U , then U is open in Y and 8 R pf´1pUq.

Hence pf´1pUq “ f´1pUq, open in X since the inverse image of an open set in Y

under f is an open set in X. But open in X also implies open in pX by definition of
pX.

If 8 P U , then U “ Y zC Y t8u for some C compact in Y . We have pf´1pUq “
f´1pY zCq Y t8u “ f´1pY qzf´1pCq Y t8u “ Xzf´1pCq Y t8u. Since f is proper,
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C compact in Y implies f´1pCq compact in X, hence Xzf´1pCq Y t8u is open in
pX.
p ðù q Let C be any compact set in Y . Then Y zC Y t8u is open in pY . pf

continuous implies pf´1pY zC Y t8uq “ f´1pY zCq Y t8u “ Xzf´1pCq Y t8u open

in pX, hence f´1pCq must be compact in X, and thus f is proper. �

Proposition 74. If f1 : X1 Ñ Y1 and f2 : X2 Ñ Y2 are continuous, then f1 ˆ f2 :
X1 ˆX2 Ñ Y1 ˆ Y2 is continuous.

Proof. Let U be any open set in Y1ˆ Y2. By the definition of the product topology,
U “

Ť

λPΛ Uλ ˆ Vλ for Uλ open in Y1, Vλ open in Y2. We have pf1 ˆ f2q
´1pUq “

pf1ˆ f2q
´1p

Ť

λPΛ UλˆVλq “
Ť

λPΛpf1ˆ f2q
´1pUλˆVλq “

Ť

λPΛ f
´1
1 pUλqˆ f

´1
2 pVλq.

Since f1 and f2 are continuous, f´1
1 pUλq is open in X1, f´1

2 pVλq is open in X2, so

f´1
1 pUλq ˆ f

´1
2 pVλq is open in X1 ˆX2 for all λ P Λ. Hence pf1 ˆ f2q

´1pUq is open
in X1 ˆX2 since it is a union of open sets. �

Proposition 75. Suppose f1 : X1 Ñ Y1 and f2 : X2 Ñ Y2 are continuous, X1 and
X2 are nonempty, and Y1 and Y2 are Hausdorff. Then f1 ˆ f2 : X1 ˆX2 Ñ Y1 ˆ Y2

is proper if and only if f1 and f2 are proper.

Proof. p ùñ q Let C1 Ă Y1 be compact. Since X2 is nonempty, choose x2 P X2.
C1ˆtf2px2qu is compact in Y1ˆY2 since the product of two compact sets is compact,
so pf1 ˆ f2q

´1pC1 ˆ tf2px2quq “ f´1
1 pC1q ˆ f´1

2 ptf2px2quq is compact. Let π1 :

X1 ˆX2 Ñ X1 be the natural projection. π1pf
´1
1 pC1q ˆ f

´1
2 ptf2px2quqq “ f´1

1 pC1q

since f´1
2 tf2px2qu is nonempty. Since π1 is continuous, f´1

1 pC1q is compact, thus f1

is proper. f2 is proper by a similar argument.
p ðù q Let K be any compact subset of Y1 ˆ Y2. Again, π1pKq and π2pKq are

compact and π1pKq ˆ π2pKq is compact. Hence pf1 ˆ f2q
´1pπ1pKq ˆ π2pKqq “

f´1
1 pπ1pKqq ˆ f´1

2 pπ2pKqq is compact since f1 and f2 are proper. Since Y1 and Y2

are Hausdorff, Y1ˆY2 is Hausdorff, hence K is closed. By Proposition 74, f1ˆ f2

is continuous, so pf1ˆf2q
´1pKq is closed. But pf1ˆf2q

´1pKq Ă pf1ˆf2q
´1pπ1pKqˆ

π2pKqq compact, so it is compact. �

Proposition 76. If f : X Ñ Y and g : Y Ñ Z are continuous, g ˝ f is proper, and
Y is Hausdorff, then f is proper.

Proof. Let C be a compact set in Y . Since g is continuous, gpCq is compact in Z.
g ˝ f is proper thus pg ˝ fq´1pgpCqq is compact in X. Y is Hausdorff hence C is
closed. f is continuous implies f´1pCq is closed. C Ă g´1pgpCqq implies f´1pCq is
a closed subset of pg ˝ fq´1pgpCqq compact, so it is compact. �

Proposition 77. If f : X Ñ Y and g : Y Ñ Z are continuous, g ˝ f is proper, and
f is surjective, then g is proper.

Proof. Let C be a compact set in Z. Then pg ˝ fq´1pCq is a compact set in X since
g ˝ f is proper. Since f is continuous, fppg ˝ fq´1pCqq is compact in Y . But f is
surjective, thus fppg ˝ fq´1pCqq “ g´1pCq. �
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Proposition 78. If f0, f1 : X Ñ Y are homotopic, g0, g1 : Y Ñ Z are homotopic,
then g0 ˝ f0 and g1 ˝ f1 are homotopic.

Proof. Let F be the homotopy between f0 and f1 and letG be the homotopy between
g0 and g1. Let H “ G ˝ pF ˆ idr0,1sq. H is continuous since it is a composition of
continuous functions. We have Hpx, 0q “ GpF px, 0q, 0q “ Gpf0pxq, 0q “ g0 ˝ f0pxq
and Hpx, 1q “ GpF px, 1q, 1q “ Gpf1pxq, 1q “ g1 ˝ f1pxq, hence g0 ˝ f0 „ g1 ˝ f1. �

Proposition 79. All intervals in R are contractible.

Proof. Intervals are convex and any two continuous maps onto a convex set are
homotopic by the straight line homotopy, hence the identity map is homotopic to
any constant map. �

Proposition 80. Any contractible X is path-connected and has π1pX,xq – 1 for
all x P X.

Proof. Let F be the homotopy between the identity map and the constant map
fpxq “ x0 for some contraction point x0 P X. For all x P X, let γx “ F |txuˆI .
γx is continuous since restrictions of continuous functions are continuous. γxp0q “
F px, 0q “ idpxq “ x and γxp1q “ F px, 1q “ fpxq “ x0, hence it is a well-defined
path from x to x0. We can thus construct a path between any two x1, x2 P X using
γx1 ˚ xγx2

3.
Let γ be any loop with basepoint x0. Note F pγpsq, tq gives a homotopy between

γpsq and the constant loop ex0psq “ x0. However, the basepoint need not be fixed,
so this is not necessarily a path-homotopy.

Consider the image of the basepoint, γx0psq “ F px0, sq, which is a loop based
at x0 since x0 is the contraction point. We can prepend and append this path
to the homotopy to fix the basepoint in place. Let γtx0psq “ γx0ptsq and γtpsq “

F pγpsq, tq. Let Hps, tq “
´

xγtx0 ˚ γ
t ˚ γtx0

¯

psq. This is well defined since γtx0p1q “

F px0, 1 ˆ tq “ F px0, tq “ F pγp0q, tq “ γtp0q “ γtp1q “ xγtx0p0q. The basepoint

is fixed since Hp0, tq “ γtx0p0q “ x0 and Hp1, tq “ xγtx0p1q “ x0. Hence H is

a path-homotopy from Hps, 0q “
´

xγ0
x0 ˚ γ

0 ˚ γ0
x0

¯

psq “ pxex0 ˚ F pγ, 0q ˚ ex0q psq “

pex0 ˚ γ ˚ ex0q psq and Hps, 1q “
´

xγ1
x0 ˚ γ

1 ˚ γ1
x0

¯

psq “ pxγx0 ˚ ex0 ˚ γx0q psq. Finally,

γ „p pex0 ˚ γ ˚ ex0q and ex0 „p pxγx0 ˚ ex0 ˚ γx0q, hence γ „p ex0 , so π1pX,x0q – 1.
Since X is path-connected and paths induce isomorphisms on fundamental groups
with different bases, we have π1pX,xq – 1 for all x P X. �

Proposition 81. If Y is contractible, then any two continuous f0, f1 : X Ñ Y are
homotopic.

3A wide hat over a path denotes the inverse path. That is, yγpsq “ γp1´ sq
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Proof. Let F be the homotopy from the identity map to the constant map fpxq “ x0

for some contraction point x0 P X. Let

Hpx, tq “

#

F pf0pxq, 2tq t P r0, 1
2 s

F pf1pxq, 2´ 2tq t P r12 , 1s

H is well defined since F pf0pxq, 1q “ F pf1pxq, 1q “ x0 and it is continuous by the
gluing lemma. It is a homotopy since Hpx, 0q “ F pf0pxq, 0q “ f0pxq and Hpx, 1q “
F pf1pxq, 0q “ f1pxq. �

Proposition 82. If X is contractible and Y is path-connected, then any two con-
tinuous g0, g1 : X Ñ Y are homotopic.

Proof. Let F be the homotopy from the identity on X to the constant function
fpxq “ x0 for some contraction point x0 P X. Let Hpx, tq “ g0pF px, tqq and
Gpx, tq “ g1pF px, tqq. H and G are continuous since they are compositions of
continuous functions and H is a homotopy from Hpx, 0q “ g0pF px, 0qq “ g0pidpxqq “
g0pxq to Hpx, 1q “ g0pF px, 1qq “ g0px0q. Similarly, G is a homotopy from g1pxq to
g1px0q. Let γ be a path from g0px0q to g1px0q. Then Kpx, tq “ γptq is a homotopy
from g0px0q to g1px0q. g0pxq „ g0px0q „ g1px0q „ g1pxq, hence g0pxq „ g1pxq. �

Proposition 83. Let S “ tp0, yq � y P r0, 1su Y tpx, 0q � x P r0, 1su. S Ă R2 is
star-convex but not convex.

Proof. Let x “ p0, 0q. Consider any y “ px1, y1q P S. If x1 “ 0, then xy “ p0, ty1q Ă

S for t P r0, 1s since ty P r0, 1s if both t, y P r0, 1s. The argument is similar if y1 “ 0,
so S is star-convex.

S is not convex since for x “ p1, 0q and y “ p0, 1q, the line segment xy “ pt, 0q `
p0, 1´ tq is not a subset of S since p1

2 ,
1
2q R S. �

Proposition 84. Let fpsq “ pcosπs, sinπsq. Let T “ tfpsq � s P r0, 1su. T is
contractible but not star-convex.

Proof. Let F ps, tq “ p1´tqs. Let G “ f ˝F . G is continuous since it is a composition
of continuous functions. G is a contraction of T since Gps, 0q “ pcosπs, sinπsq and
Gps, 1q “ pcos 0, sin 0q “ p1, 0q.

For any p “ px1, y1q P T , we have x2
1 ` y2

1 “ 1 since cos2 x ` sin2 x “ 1 for all
x P R. Let y “ mx ` b be any line. This line intersects T at most twice since
x2 ` pmx ` bq2 “ 1 has at most two roots. Hence, T is not star-convex since any
xy can contain at most two points of T but xy contains infinitely many points if
x ‰ y. �

Proposition 85. Any star-convex set S is contractible hence has trivial fundamental
group.

Proof. Let x0 P S be such that x0y Ă S for all y P S. Let F px, tq “ p1´ tqx` tx0.
F is continuous as we’ve shown in class. Since x0x Ă S for all x, F pS, tq Ă S, so F
is a valid homotopy. Since F px, 0q “ x and F px, 1q “ x0, it is a contraction. �

Proposition 86. Let S Ă X and f be a retraction X Ñ S. Then for any x0 P S,
the homomorphism f˚ : π1pX,x0q Ñ π1pS, x0q is surjective.
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Proof. Consider any g P π1pS, x0q. Choose any γ : I Ñ S as a representative of
g. Let i : S Ñ X be the natural inclusion map. Then f˚pi˚prγsqq “ f˚pri ˝ γsq “
rf ˝ i ˝ γs “ ridS ˝ γs “ rγs, hence f˚ is surjective. �

Proposition 87. For any two topological spaces X and Y , there is a natural iso-
morphism π1pX ˆ Y, xˆ yq – π1pX,xq ˆ π1pY, yq.

Proof. Let ψ : π1pX ˆ Y, x ˆ yq Ñ π1pX,xq ˆ π1pY, yq be given by ψprγsq “
pΠ1˚prγsq,Π2˚prγsqq, where Π1 and Π2 denote the natural projections onto the first
and second coordinates.

Consider any g P π1pXˆY, xˆyq and let rγ1s “ rγ2s “ g for some representatives
γ1, γ2. Then there exists F ps, tq continuous such that F ps, 0q “ γ1psq, F ps, 1q “
γ2psq, F p0, tq “ F p1, tq “ x ˆ y. We have ψprγ1sq “ prΠ1 ˝ γ1s, rΠ2 ˝ γ1sq and
ψprγ2sq “ prΠ1 ˝ γ2s, rΠ2 ˝ γ2sq. Let G “ Π1 ˝ F . G is continuous since it is a
composition of continuous functions. We also have Gps, 0q “ Π1pF ps, 0qq “ Π1 ˝ γ1

and Gps, 1q “ Π1pF ps, 1qq “ Π1˝γ2, so Π1˝γ1 „p Π1˝γ2. Similarly, Π2˝γ1 „p Π2˝γ2,
so ψprγ1sq “ ψprγ2sq, hence ψ is well-defined.
ψ is a homomorphism since

ψprγ1srγ2sq “ ψprγ1 ˚ γ2sq

“ pΠ1˚prγ1 ˚ γ2sq,Π2˚prγ1 ˚ γ2sq

“ prΠ1 ˝ pγ1 ˚ γ2qsq, rΠ2 ˝ pγ1 ˚ γ2qsq

“ prpΠ1 ˝ γ1q ˚ pΠ1 ˝ γ2qs, rpΠ2 ˝ γ1q ˚ pΠ2 ˝ γ2qsq

“ pΠ1˚prγ1sqΠ1˚prγ2sq,Π2˚prγ1sqΠ2˚prγ2sqq

“ ψprγ1sqψprγ2sq

Consider any pg, hq P π1pX,xq ˆ π1pY, yq and let rγ1s “ g and rγ2s “ h for some
representatives γ1 and γ2. Let γptq “ pγ1ptq, γ2ptqq. This is a well-defined loop in
X ˆ Y since γp0q “ γp1q and since γ is continuous as the coordinate functions are
continuous. We have ψprγsq “ pΠ1prγsq,Π2prγsqq “ prΠ1˝γs, rΠ2˝γsq “ prγ1s, rγ2sq “

pg, hq, hence ψ is surjective.
Consider any element g of the kernel of ψ and let rγs “ g for some representative

γ. Then ψprγsq “ prΠ1 ˝ γs, rΠ2 ˝ γsq “ prexs, reysq. Hence, γ „p exˆy, since we can
take the product of the path-homotopies Π1˝γ „p ex and Π2˝γ „p ey and run them
on each corresponding coordinate. Thus ψ has trivial kernel, so it is injective. �

Proposition 88. For continuous loops γ1, γ2 on a topological group G based at the
identity element e, define γ1 ˛ γ2 by γ1 ˛ γ2pxq “ γ1pxq ¨ γ2pxq, where the dot denotes
the group operation. This loop is continuous and path-homotopic to γ1 ˚ γ2. This
induces a binary operation ˛ on π1pG, eq which is the same as ˚.

Proof. Since γ1 ˛ γ2 “ ¨ ˝ pγ1 ˆ γ2q where ¨ denotes the group operation which is
continuous for a topological group, it is a composition of continuous functions, hence
continuous. Additionally, γ1 ˛ γ2p0q “ γ1 ˛ γ2p1q “ e, so it is also a loop based at e.

Let F pt1, t2q “ γ1pt1q ¨ γ2pt2q. For t1 “ t2, we have γ1 ˛ γ2. For t2 “ 0 followed
by t1 “ 1 we have γ1 ˚ γ2. Deforming the diagonal into the bottom-edge followed by
the right-edge shows they are path-homotopic.
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Since ˛ and ˚ behave the same on equivalence classes, they are the same operation
on π1pG, eq. �

Proposition 89. γ1 ˛ γ2 is also path-homotopic to γ2 ˚ γ1.

Proof. Using the same F as in the proof of Proposition 88, we see the path t1 “ 0
followed by t2 “ 1 gives γ2 ˚ γ1. �

Proposition 90. For every topological group G, the fundamental group π1pG, eq is
abelian.

Proof. By Propositions 88 & 89, rγ1srγ2s “ rγ1 ˚ γ2s “ rγ1 ˛ γ2s “ rγ2 ˚ γ1s “

rγ2srγ1s. �

Proposition 91. If X is path-connected and h : X Ñ Y is a homeomorphism, then
Y is path-connected.

Proof. If Y has fewer than two points, then it is vacuously path-connected. Oth-
erwise, consider y1, y2 P Y . Since X is path-connected, there exists a path γ from
h´1py1q to h´1py2q. Then h ˝ γ is a path from y1 to y2 since it is continuous as
the composition of two continuous functions and ph ˝ γqp0q “ hph´1py1qq “ y1 and
ph ˝ γqp1q “ hph´1py2qq “ y2, where we have used that h is bijective. �

Proposition 92. If M is locally m-Euclidean, then for each p PM , there exists an
open neighborhood of p homeomorphic to Bδpxq Ă Rm for some x P Rm, δ P R`.

Proof. For any p P M , there exists an open neighborhood U of p homeomorphic
to some open V Ă Rm. Since open balls form a basis for the standard topology
on Rm, V “

Ť

λPΛBδλpxλq for some index set Λ. Let Bδλ0 pxλ0q contain the image

of p under the homeomorphism. Then the inverse image of Bδλ0 pxλ0q under the
homeomorphism contains p, is open by continuity of the homeomorphism, and is
homeomorphic to Bδλ0 pxλ0q. �

Proposition 93. A locally m-Euclidean space M is path-connected if and only if it
is connected.

Proof. p ùñ q Suppose for a contradiction there exist U, V , open, nonempty, and
disjoint that cover M . Consider x P U, y P V , and γ a path from x to y. Then
γ´1pUq and γ´1pV q are disjoint since U amd V are disjoint, and γ´1pUqYγ´1pV q “
γ´1pU Y V q “ γ´1pMq “ r0, 1s. Furthermore, γ´1pUq and γ´1pV q are open and
nonempty, since γ is continuous and 0 P γ´1pUq and 1 P γ´1pV q. But then r0, 1s is
disconnected.
p ðù q If M is empty, then it is vacuously path-connected. Otherwise, consider

x P M and let P denote the set of points in M path-connected to x. Consider any
point y P P . M is locally Euclidean, so there exists an open neighborhood U of y
homemorphic to some ball in Rn by Proposition 92. By Proposition 91, U must
be path-connected, and in particular, U Ă P since y is path-connected to x and to
every point in U , so x is path-connected to every point in U . Hence P is open.

If the complement of P is empty, then P “M so M is path-connected. Otherwise,
consider q P MzP . As before, q contains a path-connected open neighborhood W
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since M is locally Euclidean. If any point in W were path-connected to x, then q
would be path-connected to x since W is path-connected, so we must have W Ă

MzP , so MzP is open. P nonempty, clopen in M connected implies P “M . �

Proposition 94. If X is path-connected and x0 P X, then π1pX,x0q – 1 if and
only if any two paths in X with the same endpoints are path-homotopic.

Proof. If X has fewer than two points, the proposition follows immediately, so as-
sume X contains at least two points.
p ùñ q Let γ1, γ2 be paths from x1 to x2 in X. Then γ1 ˚ pγ2 is a loop based at x1,

so contractible since π1pX,xq is trivial for all basepoints x since it is trivial at x0

and X is path-connected. Since γ1 ˚ pγ2 „p ex1 , we have γ1 ˚ pγ2 ˚ γ2 „p ex1 ˚ γ2 since
path-homotopy is an equivalence relation and ˚ is well defined on the equivalence
classes. But this gives γ1 „p γ2.
p ðù q Let γ1, γ2 be two loops based at x0. Since they are paths with the same

endpoints, they must be path-homotopic, so π1pX,x0q – 1. �

Proposition 95. For n P Nzt0u, the map f : Czt0u Ñ Czt0u defined by fpzq “ zn

is a covering map.

Proof. Let U “ Cztx P R|x ě 0u. Let Vk for 0 ď k ă n to be the set of all

points in Cz0 that can be written as reiφ with r ą 0 and 2πk
n ă φ ă 2πpk`1q

n . Let

gpreiφq “ 1
nre

iφ
k . g is a continuous inverse of f |U therefore f |Vk is a homeomorphism

between Vk and U . Hence, the Vk evenly cover U . Let Uθ “ Cztreiθ|r ě 0u,
then ϕθpzq “ zeiθ is a homeomorphism from U to Uθ. Let Vk,θ “ ϕ θ

n
pVkq, then

f |Vθ,k “ ϕ´1pfpϕ θ
n
pzqqq is also a homeomorphism, so f´1pCzVθ,kq “ Uθ, so Vθ,k

evenly covers Uθ. �

Proposition 96. If p : Y Ñ X is a covering map, X is connected, and p´1pxq has
k elements for one x P X, then p´1pxq has k elements for all x P X.

Proof. Let K Ă X be the set of k-covered elements. K is non-empty by assumption.
Consider any element x P K. Since p is a covering map, there exists an open
neighborhood U of p such that p´1pUq – U ˆ Λ for some discrete set Λ. But since
p´1pxq has k elements, we must have Λ – 〈k〉. Hence, every y P U is k-covered, so
U Ă K, thus K is open. A similar argument shows XzK is open, so K is nonempty,
clopen in X connected, hence K “ X. �

Proposition 97. If f : Z Ñ Y and g : Y Ñ X are covering maps such that for all
x P X, g´1pxq is finite, then g ˝ f is a covering map.

Proof. If X is empty, the proposition follows vacuously. Otherwise, consider any
x P X. Since g is a covering map, there exists an open neighborhood U of x
such that g´1pUq “

Ť

λPΛ Vλ, where the Vλ are disjoint and g|Vλ : Vλ Ñ U is a
homeomorphism for all λ P Λ.

Let vλ “ g´1pxq X Vλ for all λ P Λ. Each vλ has an evenly covered open neigh-
borhood Wλ since f is a covering map. Let K “

Ş

λPΛ gpWλ X Vλq. For all λ P Λ,
gpWλXVλq is open since WλXVλ is an intersection of two open sets and g is a local
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homeomorphism, in particular open. Λ is finite since g´1pxq is finite, so K is open
since it is a finite intersection of open sets gpWλ X Vλq. Since vλ P Wλ X Vλ for all
λ P Λ, x P K.

Let each f´1pWλq “
Ť

δP∆H
δ
λ be the even cover of each Wλ. Then

pg ˝ fq´1pKq “
ď

λPΛ,δP∆

q´1pWλ X Vλq XH
δ
λ

This provides an even cover of K under g ˝ f . �

Proposition 98. S1 Ă R2 is a deformation retract of R2zt0u.

Proof. Let H : R2zt0uˆI Ñ R2zt0u be given by Hpx, tq “ p1´tqx`t
x

}x}
. H is well-

defined since for all x P R2zt0u, }x} ‰ 0. It is known from analysis H is continuous.
For all v P S1, }v} “ 1, so Hpv, tq “ v ´ tv ` tv{1 “ v. Since Hpx, 0q “ x and
Hpv, 1q “ v{}v}, it is a deformation retraction.

�

Proposition 99. S1 Ă R2 cannot be a deformation retract of R2.

Proof. By Proposition 100, if S1 were a deformation retract of R2, its fundamental
group would be trivial, but its fundamental group is Z, which is not isomorphic to
the trivial group. �

Proposition 100. If f : X Ñ A is a deformation retract and a P A, then the
induced homomorphism f˚ : π1pX, aq Ñ π1pA, aq is an isomorphism.

Proof. f˚ is surjective by Proposition 81. Suppose rγs is in the kernel of f˚. If H
is the given deformation retraction, then Hpγ, 0q “ γ and Hpγ, 1q “ f ˝γ. Since the
base-point is inside the retract, it remains fixed, so γ is path-homotopic to f ˝ γ.
But f ˝ γ is path-homotopic to the trivial loop since rγs is in the kernel of f˚, so
by transitivity of path-homotopy, γ is path-homotopic to the trivial loop, hence
the kernel of f˚ is trivial, and thus f˚ is injective. But a homomorphism that is a
bijection is an isomorphism. �

Proposition 101. Let x0 be any point in R2zt0u. x0 is a retract of R2 given by the
constant map, but x0 cannot be a deformation retract.

Proof. If x0 were a deformation retract of R2zt0u, its fundamental group would
be isomorphic to Z by Proposition 100 and Proposition 98, but x0 has trivial
fundamental group and Z is not isomorphic to the trivial group. �

Proposition 102. Z fl Zˆ Z.

Proof. If the two groups were isomorphic, then Z ˆ Z would be cyclic, since the
image of 1 under the isomorphism would generate Z. But any pn,mq P Z ˆ Z only
generates tpkn, kmq|k P Zu, which cannot be all of Zˆ Z. �
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Proposition 103. No two of S3, S2 ˆ S1, and S1 ˆ S1 ˆ S1 are homeomorphic.

Proof. It suffices to show no two of 1,Z ˆ 1, and Z ˆ Z ˆ Z are isomorphic, since
homeomorphic spaces have isomorphic fundamental groups. Since Z ˆ 1 – Z and
ZˆZˆZ are not trivial, it suffices to show that Z fl ZˆZˆZ, but this follows by
a proof entirely similar to the proof of Proposition 102. �

Proposition 104. R2 is not homeomorphic to Rn for any n ą 2.

Proof. Let e0 “ p1, 0, . . . , 0q P Rn. It was proven by Michael Thaddeus that
π1pRnzt0u, e0q – 1 for n ą 2. But π1pR2zt0u, e0q – Z by Propositions 98 &
100. But if R2zt0u is not homeomorphic to Rnzt0u for n ą 2, then R2 cannot be
homeomorphic to Rn for n ą 2. �

Proposition 105. Let X “ Y “ S1. Let p : S1 Ñ S1 be given by ppzq “ zn for
some n P N. Then the group of deck transformations D is isomorphic to Z{nZ.

Proof. Michael Thaddeus showed that p is a Galois covering, and for any Ga-
lois covering, we have that the group of deck transformations is isomorphic to
π1pXq{p˚pπ1pY qq. But π1pXq – Z, and p˚pπ1pY qq – nZ since the image of the
loop winding around S1 once winds around n times under the map. �

Proposition 106. Let Z “ S1 ˆ ta, bu with ta, bu discrete and let π : Z Ñ S1 be
given by πpz, aq “ z and let πpz, bq “ z2. Let z0 “ p1, aq, z1 “ p1, bq, z2 “ p´1, bq so
π´1p1q “ tz0, z1, z2u. Let X be the figure eight and let Y be the quotient of disjoint
union of two copies of Z under the equivalence relation z0 „ z12, z1 „ z11, z2 „ z10.
Then the group of deck transformations DYÑX is trivial, which is not equivalent to
permuting the fibers, hence the covering is not Galois.

Proof. Each copy of Z has a group of deck transformations of order two, since the
copy of S1 that corresponds to π1pS

1, bq can be rotated by π. However, the two
copies of S1 cannot be interchanged since this would destroy loops. Then deck
transformations on Y correspond to deck transformations on the two copies of Z, so
we check the cases where the deck transformations on the copies of Z are both trivial,
one of them is nontrivial, and both of them are nontrivial. Since the transformations
where at least one of them is nontrivial break loops through z1, it must be that the
group of deck transformations is trivial. �

Proposition 107. Let X Ă R3 be the union of the spheres of radius 1 centered at
p0, 0, 1q and p0, 0,´1q, respectively.

Proof. Let U and V be the intersections of X with open balls of radius 3
2 centered

at p0, 0, 1q and p0, 0,´1q respectively. Then X “ U Y V and U and V are path-
connected. Additionally, the spheres of radius 1 whose union is X are deformation
retracts of U and V and their intersection has a point as a deformation retract.
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Hence, by Seifert-Van Kampen, the fundamental group is the free product with
amalgamation 1 ˚1 1, which is trivial. �

Proposition 108. Let w be a word of minimal length in its equivalence class in the
free group G ˚H. Then w is a sequence of alternating letters in G and H with no
identity elements.

Proof. Suppose w is a word of minimal length. If w contains identity elements, these
elements can be removed to produce an equivalent word with fewer letters, but w
is minimal, hence it cannot contain identity elements. Similarly, if w contained
two adjacent letters in the same group, they could be replaced by their product
yielding an equivalent word which would be shorter. But w is minimal, so this
cannot happen. �

Proposition 109. Let F be the following algorithm:
F receives as its input a word w in the free product G ˚H. F begins by removing

all identity elements from w. Then, it iterates through a word w left to right. Every
time two letters belonging to the same group are found adjacent, it replaces them
with their product. It terminates when no adjacent letters from the same group exist
in the word.

Running F on a word w yields the word of minimum length in the equivalence
class of w.

Proof. F must always terminate on any word since words have finite length and F
either reduces the length of the word each iteration by replacing two letters with one
letter or removing identity elements, or it does nothing, in which case it terminates.
F pwq satisfies the conditions of Proposition 108 since F removes the identity
elements from words and terminates only when words are an alternating sequence
of elements in G and H.

Since F cannot add new letters, |F pwq| ď w. If w has no identity elements and
is a sequence of alternating letters in G and H, then F terminates without editing
w, since no identity elements exist to be removed and no two adjacent elements can
be multiplied. If w and w1 are in the same equivalence class, then F pwq “ F pw1q
since if they differ by any identity elements, those are removed by F anyway. If they
differ by element multiplication, F exhausts all possible element multiplication, and
since group multiplication is associative, the result is the same. �

Proposition 110. Any word in G ˚H is represented by a unique word of minimal
length.

Proof. Let w be any word in the free product. Let w1 be any word of minimal length
in the same equivalence class as w. Then w1 “ F pw1q “ F pwq, so F pwq has minimal
length. But we also see that for any word of minimal length, w1 “ F pwq, so the
word of minimal length is unique. �

Proposition 111. If G and H are nontrivial, then the free product G ˚ H is not
abelian.

Proof. If g and h are nontrivial elements, then gh ‰ hg, so the free product is not
abelian. �
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Proposition 112. The free product with amalgamation Z˚ZZ is abelian, where the
map denoted is the identity map.

Proof. The group is isomorphic to Z itself, so it is abelian, as we’ve seen in class. �

Proposition 113. The fundamental group of a bouquet of n circles is Z˚n.

Proof. We proceed by induction and Seifert-Van Kampen. For n “ 1, the bouqet is
homeomorphic to S1, so it’s fundamental group is Z. For n “ 2, it’s homeomorphic
to the figure-eight, so its fundamental group is Z ˚Z. Assume the proposition holds
for n “ k. For n “ k ` 1, we can decompose this as a union of a bouquet of k
circles union another circle with their intersection being a single point. Of course
to apply Seifert-Van Kampen we require open sets, but it’s clear that our sets are
deformation retracts of slightly larger open sets. The fundamental group is thus
Z˚k ˚1 Z “ Z˚pk`1q, so the proposition holds. �

Proposition 114. The fundamental group of the complement of n points in R2 is
the same as the fundamental group of a bouquet of n circles.

Proof. The complement of n points in R2 has a bouquet of n circles as a deformation
retract, so the proposition follows. �

Proposition 115. The fundamental group of the union of a torus and a disk cutting
through the torus is Z.

Proof. The disk has trivial fundamental group, while the torus has Z ˆ Z as its
fundamental group. Their intersection, S1, has Z as its fundamental group. The
torus and disk are deformation retracts of slightly larger open sets which are path
connected and cover the space, as well as having the circle as a deformation retract
of their intersection, so we have that the fundamental group of the space is 1˚ZZˆZ
by Seifert-Van Kampen, which is isomorphic to Z since the homeomorphism is just
an embedding of Z in Zˆ Z. �

Proposition 116. The fundamental group of the complement of n points on a torus
is the same as the fundamental group of a bouquet of n` 1 petals.

Proof. This follows since the complement of n points on a torus has a bouquet of
n` 1 petals as a deformation retract. �


