TOPOLOGY NOTES

KLINT QINAMI

Preamble. The following is a collection of exercises relating to point-set topology
and preliminary algebraic topology, together with my proofs of those exercises. Use
at your own risk.

Proposition 1. S = (—00,a) u (b,0) for fited a < b€ R is open. R\S is not open.

Proof. For any point s € S, Bs(s) < S for 6 = min (|s — al,|s — b|). Its complement
is not open since any Bj(a) must contain points in S for all 6 > 0. |

Proposition 2. Z is not open. R\Z is open.

Proof. Z\R = | J(i,7 + 1) and hence is open since arbitrary unions of open sets are
open. 7 itself ZiesZnot open since any nonempty, open subset of R contains rational
numbers. |
Proposition 3. Q is not open nor is R\Q.

Proof. The rationals and irrationals are dense in R. Hence, for any x € Q, Bs(z)
must contain an element in R\@Q for all § > 0, and therefore Q is not open. Similarly,
its complement also cannot be open. |

Proposition 4. S = {1/n | n€ Z"} is not open nor is R\S.

Proof. For all s € S, Bs(s) contains irrational numbers for all § > 0, and hence
S cannot be open. The complement of S is also not open, since any Bs(0) must
contain some 1/n for any 6 > 0 (consider n > 1/9) . [

Proposition 5. f(x) = |z| is continuous on R.

Proof. For all € > 0, take 6 = e. We have that for all g € R, |x — x¢| < € implies
|f(x) — f(xo)| = ||| — |zo]| < |z — xo| < € and hence f is continuous. [
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Proof. The preimage g_l(Bl/g(O)) = Q is not open by Proposition 3. |

Proposition 6. g(z) = { is not continuous on R.

Proposition 7. f : R — R is continuous if and only if f=1(V) is closed for any
closed V < R.

Proof. If f is continuous, then f~1(R\V) = R\ f~(V) is open and hence f~1(V) is
closed. The other direction follows similarly. |
1
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Proposition 8. The image of any open set is not necessarily open for a continuous
function.

Proof. Consider f : R — R given by f(z) = 0. The image of any open set is {0}. W
Proposition 9. If U < R™ and V < R" are open, then so is U x V < R™*",

Proof. Given (u,v) € U x V, we must have By, (u) ¢ U and Bg,(v) < V, hence
Bs, (u) x Bs, (v) < UxV. Taking 6 = min(d1, d2) gives Bs((u,v)) < By, (u)x Bs, (v) <
UxV. |

Proposition 10. The open disk D1 = {(z,y) | 2* + y* < 1} cannot be written as
the Cartesian product of two open sets U,V < R.

Proof. Suppose that D1 = U x V for some open U,V < R. Since (0, ‘[), (‘2[,0) €

U x V, we must have (\{’ ‘2[) € U x V, but this point is not in D;. [

Proposition 11. Let S = U L; < R? for ne N be the union of a finite number of
i=1

lines L;. R\SS is open.

Proof. We proceed by induction on the number of lines. If S = L for some line L, for
all points z € R\S, take d to be the perpendicular distance from z to L. Otherwise,
suppose R\S is open for S = | Ji_; L;. For all z € R\, there exists d; > 0 such that
Bs, () < R\S. For the set (R\S)\Lit+1, take § to be the minimum of d5 and the
perpendicular distance to L;y1. We must have that Bs(xz) < (R\S)\Lit+1 and hence
R\S is open for § = | '] L;. [ ]

Proposition 12. Let X and Y be sets. A function f : X — Y is continuous for
every topology T on X and every topology S on Y if and only if f is constant.

Proof. If X = &, then f is vacuously constant. Otherwise, there exists x € X.
Consider T = {#, X} and S = P(Y). If f is continuous, f~1({f(z)}) € T since
{f(z)} €S, and hence f~1({f(x)}) = X, thus f is constant .

If f is constant, the preimage of any open set is ¢J or X, and thus open, hence f
is continuous. |

Proposition 13. Let X be a set. T ={U c X | U = & v |X\U| € N} is a topology
on X.

Proof. Note (#,X € T. For A any index set, Uy € T, we have X\|J,cp U =
(ea X\Ux, an intersection of finite sets, which must be finite. For finite A,
X\ Mxea Un = Upea X\Ua, a finite union of finite sets, which must be finite. [

Proposition 14. For X equipped with cofinite topology, f : X — X is continuous
if and only if f=1({z}) is finite for all x € X or f is constant.

Proof. If X = (&, the proposition follows vacuously. Otherwise, there exists x € X.
If f is continuous, since {z} is closed, f~!({x}) is closed, hence either X or finite.

If f is constant, then it is continuous. Otherwise, consider any closed V. It must
be V = U)\GA{SC)\} for A a finite index set. We have f=1(V) (U/\EA{x,\}

Usea f 1 ({za}), a finite union of finite sets, hence finite and closed



Proposition 15. 1 in the following table indicates when the identity map is con-
tinuous for various topologies on R, 0 indicates otherwise. Map is from row label to

column label.
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1: R — R | Discrete | Standard | Cofinite | Indiscrete
Discrete 1 1 1 1
Standard 0 1 1 1
Cofinite 0 0 1 1
Indiscrete 0 0 0 1

Proof. For any open set U, i~*(U) = U, hence the table follows since Indiscrete c
Cofinite < Standard c Discrete. |

Proposition 16. Let T be subsets S < R such that, for all x € S, there exists
a,b e R such that x € [a,b) = S. T is a topology.

Proof. Note {#,R} < T. For A any index set, Sy € T, z € o) Sx implies z € Sy
for some A € A. Since S is open, there exist a, b such that z € [a,b) = Sy < [, cp Sr,
hence the union is open. Finally, it suffices to show the intersection of two open sets is
open, since the general case follows by induction. For open Sy, S, x € 511 .S implies
x € [a1,b1) < Sy and x € [ag,by) < Sy. Thus x € [max(ay,az), min(by, be)) = S1n Sy,
hence the intersection is open. |

Proposition 17. The standard topology on R induces the discrete topology on Z.

Proof. Tt suffices to show for all U € P(Z), there exists an open set V' < R such

that U = Z n V, since the induced topology must be coarser than P(Z). Let

V = U,y B1(2). V is open since it is the union of open balls, and ZnV =U. B
7

Proposition 18. Identify R with {(z,0) € R? | € R}. The standard topology on
R? induces the standard topology on R.

Proof. For all U c R open, there exists V < R? open such that U = V n R, namely
V = U x R, hence the induced topology is finer than the standard topology. Any
open set in the standard topology on R? can be written as U = | J,, Bs, (z,) for
A some index set. We have RN U =R n [J,cp Bs, (x2) = Uyepr R N Bs, (x5). Since
each RN Bj, (x)) is either empty or an open interval, and the union of open intervals
is open in the standard topology on R, the standard topology must be finer than
the induced topology. |

Proposition 19. For (X, T) a topological space, Y a set, f : X — Y any function,
S={UcY | f~YU)eT} is a topology on Y.

Proof. Note &,Y € S. For A any index set, Uy € S, we have f~1({J,cp Ur) =
Usea f7HU,) € T since each f~1(Uy) € T and T is closed under union. Closure
under intersection follows similarly with A finite. |

Proposition 20. In the product of two topological spaces Y x Z, a subset U is open
if and only if it can be expressed as the union | Jycp Vi x Wy for some open Vy Y
and Wy c Z.
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Proof. The proposition follows since products of open sets form a basis for the
product topology, and any open set in the generated topology of a basis can be
expressed as a union of basis elements. |

Proposition 21. Let X,Y, Z be topological spaces and let' Y x Z have the product
topology. F = (f1,f2) : X — Y X Z is continuous if and only if fi and fo are
continuous.

Proof. If F is continuous, for all open V c Y, F~Y(V x Z) = f7*(V) n f;1(Z) =
fi 1(V) N X = f~1(V) is open, hence fi is continuous. Similarly, f» must also be
continuous.

If f1 and fo are continuous then for all open U C Y x Z, We have F~1(U) =
FH Uxea Vax W) = Usepa FH(Va x W) = Upen f1 (V)N fy L(W,) is open since
the intersection of any two open sets is open, and an arbitrary union of open sets is
open. |

Proposition 22. Rt = {z € R | z > 0} with the subspace topology from R is
homeomorphic to R.

Proof. We use f : R — R* given by f(x) = e* with continuous inverse f~! = In(z)
as our homeomorphism. |

Proposition 23. Let S = {(x,y) € R? | 22 + y? = 1} equipped with the subspace
topology. R?\{0} with subspace topology is homeomorphic to R x S with the product
topology.

Proof. Let fi : R*\{0} — R be given by fi(z,y) = In <\/x2+y2). Let fo :

R2\{0} — S be given by fao(x,y) (ac/\/ac2 +y2,y/A/ 22 +y ) Let g = (f1, f2)-
We know from analysis fi and f> are continuous, hence by Proposition 3, g is also
continuous. ¢~ !(w,u,v) = (e%u,e¥v) is also continuous, hence we have a homeo-
morphism. [

Proposition 24. For u,v € R2, define
d( )_{|U—V if u=tv for someteR

Jul| + |v|| otherwise
d is a metric, but does not induce the standard topology.

Proof. Note d(u,v) = 0 and d(u,v) = 0 implies u = v and d(u,v) = d(v,u) for all
u,v. If x =ty = rz for some ¢, € R, then d(x,z) < d(x,y)+d(y, z) since |[x—z| <
|x —y| + |ly — z|. If ¢ exists but r does not, then still d(x,z) < d(x,y) + d(y, z)
since |x| + |z|| < [[x—y|l+ |y] + |z|- The other case where r exists but ¢ does not is
similar. If all points lie on different railway tracks, then d(x,z) < d(x,y) + d(y, z)
since x| + |7 < |x] + | + y] + ||

The metric topology on R? induced by d is not the standard topology, however,
since B1(0,1) is a line segment in the metric topology, which is not open in the
standard topology. |
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Proposition 25. The topology {{a, b}, {a}, &} on {a,b} cannot come from any met-
Tic.

Proof. We note this space is not Hausdorff since the points a and b do not have
disjoint neighborhoods. |

Proposition 26. The metric topology on any finite set is the discrete topology.

Proof. Each singleton set must be open for each point to have a disjoint neighbor-
hood with all other points. Since the singletons generate the discrete topology, we
are done. [

Proposition 27. For u,v € R", define
n
d(u,v) = |u — v
i=1

d’ is a metric inducing the standard topology.

Proof. Note d'(u,v) > 0 and d'(u,v) = 0 implies u = v and d'(u,v) = d'(v,u)
for all uw,v. Additionally, d'(x,2z) = X", |z — 2| = Dy lzs —vi +yi — 2zi] <
iy i =yl + 20 v — zil = d(x,y) + d'(y, 2).

Let S be the set of basis elements for the standard topology and let T be the set of
basis elements for the topology induced by d'. For Bs 4 (z) € T, note S 3 By m(z) =
Bs ¢ (x) by Cauchy-Schwartz. Similarly, for Bs(x), we have Bs ¢ (x) < Bs(x). Hence,
each topology is finer than the other, and thus they must be equal. |

Proposition 28. Let X,Y be topological spaces, Ac X, B < Y. Then for X xY
with the product topology, A x B = A x B.

Proof. (o) Let (a,b) € A x B, W < X xY open, (a,b) € W. Consider a basis
element U x V < W withae U, be V. SinceanandbeE,UmA;é@ang
VnB# @ Hence UxV nAxB#,s0(a,b)e AxB. (c) AxBcAxB

implies A x Bc Ax B=A x B. [

Proposition 29. Let a < b <c <d <e, all in R. Then no two of A n B,An
B,An B,An B,An B are equal for A = (a,c) v (d,e) and B = [a,b) u {d}.

Proof. Explicitly computing gives

An B =(a,b)
An B =a,b)u{d}
An B = (a,b]
An B =]a,b]
An B =a,blu{d}

Proposition 30. If X is Hausdorff, then {x} is closed for all x € X.



6 KLINT QINAMI

Proof. For all y € X\{z}, theres exists an open neighborhood B(y) such that y €
B(y) but z ¢ B(y), so X\{z} = J,cx\(»j B(y) is open, hence {z} is closed. [ ]

Proposition 31. X is Hausdor(f if and only if the diagonal A = {(z,x) | v € X}
X x X is closed.

Proof. (=) If distinct points x, y have disjoint neighborhoods U, V', then X x X\ A
is open since (z,y) e U x Vand U x V. n A = F since U,V are disjoint. ( <= )
X x X\A open implies for all (z,y), there exists open W s.t. (z,y) e W < X x X\A.
Since W is open in the product topology, there exist U,V open s.t. (z,y) e U xV <
W. W n A = implies U and V are disjoint, hence X is Hausdorff. |

Proposition 32. Let f: X — Y be continuous, C < Y closed, and D c X dense.
Then f(D) < C implies f(X) c C.

Proof. f continuous implies f~1(Y\C) is open. If f~}(Y\C) is nonempty, then
there exists d € f~1(Y\C) n D since D is dense, and f(d) ¢ C, a contradiction to
f(D) = C. Hence f~1(Y\C) is empty, so f(X) < C. [ |

Proposition 33. Let X, Y be topological spaces with' Y Hausdorff. Let f,g: X — Y
be continuous functions. If D < X is dense and f|p = g|p, then f =g.

Proof. Consider h : X — Y x Y given by h(z) = (f(z),g(x)). Since f,g are
continuous, h is continuous. By Proposition 4, Y is Hausdorff implies A is closed.
flp = g|p gives h(D) c A, so h(X) < A by Proposition 32. Hence f = g. [ |

Proposition 34. For X a topological space, A < X a subset, A has no limit points
in itself if and only if the subspace topology on A is discrete.

Proof. ( = ) For all a € A, a not a limit point of A implies there is an open
neighborhood U 3 a such that U n A = {a}, hence {a} is open in the subspace
topology. Since singletons generate the discrete topology, we’re done. ( <= )
Subspace topology being discrete implies that for all a € A, there exists U open in
X such that U n A = {a}, hence a is not a limit point of A. [

Proposition 35. Let S = {1/n | n € ZT} c R with the standard topology. S has
discrete subspace topology and a limit point outside itself.

Proof. Given n € Z*, let § = N(%H) Then Bs(1/n) n S = {1/n}, so the subspace
topology on S is discrete. But any Bs(0) contains some 1/n for n > 1/§, so 0 is a
limit point of S, yet 0 ¢ S. |

Proposition 36. Let X,Y be topological spaces. Let Vi and Vo be open subsets
of X st. ViuVo = X. Let fi : Vi - Y and fo : Vo — Y be functions s.t.
filviavs = folviavy. Then f: X =Y given by

) file) zeW
o= {2

1s continuous if and only if both f1 and fo are continuous.
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Proof. Since filv,~v, = folvinw, f is well defined. If f is continuous, then for any
open U < Y, we have f; 1 (U) = (flv,) ' (U) = Vi n f~YU), an intersection of
open sets, and thus open. Hence f; must be continuous. Continuity of fo follows
similarly.

If fi and f» are continuous, then for any open U < Y, we have f~}(U) =
(f1)7™ = (o)™ = () O) v (flhe) T (U) = f71(U) U f31(U), a union
of two open sets, and hence open. Thus f is continuous. [

Proposition 37. Let {A,|n € N} be a sequence of connected subsets of X such that
for eachn, Ay, N Apns1 # . Then UZO:O A, =S is connected.

Proof. Let U < S be nonempty, clopen. Then there exists i € Ns.t. A, nU # .
Since A; is connected and A; n U is a nonempty clopen subset of A;, we have
A; = A; nU and hence A; c U. Then A;_ 1 nU # & and A;;1 nU # . By the
same reasoning, A;_1 < U and A;;1 < U. By induction both ways, it follows that
for all i e N, A; c U. Hence S c U, and thus S = U. |

Proposition 38. If A = X, let the boundary of A be BdA = A\A°, the closure
minus the interior. X is connected if and only if every proper nonempty subset has
nonempty boundary.

Proof. If BdA = A\A° = ¥, then A < A°, giving A = A = A° since A° < A c A,
implying A is clopen. If X is connected, then any proper, nonempty subset is not
clopen, hence its boundary is nonempty.

If every proper, nonempty subset A has nonempty boundary, then A # A°,
and hence A is not clopen, so the only clopen subsets are X and ¢, hence X is
connected. |

Proposition 39. No two of (0,1),(0,1],[0, 1] are homeomorphic.

Proof. By Heine-Borel, [0,1] is compact and (0, 1), (0,1] are not compact. Hence
[0,1] cannot be homeomorphic to either of the other two sets since the image of a
compact set under a continuous function is compact.

Suppose f : (0,1] — (0, 1) is a homeomorphism. Since f is injective, f((0,1]\{1}) =
SAOADN (1)}, Since f is surjective, f((0, 1)\{f(1)} = (0, )\{f(1)}. f contin-
uous implies f((0,1)) = (0, )\{f(1)} is connected. But (0, f(1)) u (f(1),1) =
(0, D\{f(1)} and (0, f(1)) n (f(1),1) = &, so f((0,1)) is not connected, a contra-
diction. |

Proposition 40. R™\{0} is connected.

Proof. For x = (z1,22,...,2,) € R" let m(z) = 1. Let U = {z € R™\{0} | m1(x) <
0} and V = {x € R"\{0} | mi(x) > 0}. U and V are convex, and thus connected.
This implies their closures are connected. Since U and V are not disjoint, the union
U uV =R™"{0} is connected. [

Proposition 41. R is not homeomorphic to R™ for n > 0.

Proof. We proceed as in Proposition 39. Suppose f : R — R is a homeomor-
phism. Then f(R™\{0}) = f(R™")\{f(0)} = R\{f(0)} is connected by Proposition
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40. B(lllt (=0, £(0)) U (f(0),0) = R\{f(0)} and (-0, f(0)) N (f(0),0) = &Ia
contradiction.

Proposition 42. The cardinality of the set of lines through any point in R? is at
least uncountable.

Proof. For any point x = (z9,y0) € R%, let L = {m = g:zg | m € R}. Since R is
uncountable, L is uncountable. But every line in L passes through x, so the number

of lines passing through  must be at least as large in cardinality as L. |

Proposition 43. The complement of any countable set in R? is path-connected,
and hence connected.

Proof. Consider a countable set S = R? and any two points z, y in R?\S. Let L, and
L, denote the set of all lines passing through x and y respectively. By Proposition
42 these sets are at least uncountable.

Let LY = {m = 2=12 | (z0,y0) = z, (z1,91) € S} be the set of lines in L, passing
through a point in S. Define Lj similarly. Since S is countable, L7 and Lj are
countable. Hence L,\Lg and L,\Lg are at least uncountable. Let L; be a line in
L, \Lg with slope my. Since L,\Lj is uncountable, we can find Ly in Ly\Lj with
slope mo # my. Therefore L1 and Lo intersect by the parallel postulate. Let x.
denote the point of intersection. Then ~ : [0,1] — R? given by

b (=2t + 2t tel0,3]
(t) = 2(1 —t)ze + (2t — 1)y te[%,l]

is a continuous function by the gluing lemma, with «(0) = x and (1) = y, hence a
path from z to y. Additionally, ¥([0,1]) n S = & since ¥([0, 3]) = Ly € L;\L¢ and
v([3.1]) € Lo € Ly\L¢. Therefore the complement of S in R? is path-connected. W

Proposition 44. Any open connected A < R"™ is path-connected.

Proof. If A = ¢, then it is vacuously path connected. Otherwise, there exists
xg € A. Let P denote the set of points in A path connected to xg. Since g € P, P
is nonempty.

Consider any x € P and let «; denote the path from xy to x. Since A is open,
there exists 0 > 0 s.t. Bs(z) < A. For any y € Bs(x), let v2(t) = (1 — t)x + ty. By
the triangle inequality, v2([0,1]) < Bs(z) < A. Then

w2t te[o,3]
() = {72(%— 1) te [%,i]

is a path in A from z( to y, hence Bs(x) € P and P is open.

Now consider a point not path connected to zg, that is x € A\P. Since A is open
again there exists 0 > 0 s.t. Bs(x) < A. Suppose there were a path v from zg to
y € Bs(z). Then compose this path again as before with a path from y to z. This
is a path from z to z, a contradiction. Hence y is also not path connected to xg,
and Bs(z) < A\P, hence P is clopen. Since P is a nonempty clopen subset of A,
P = A, and hence A is path connected since xy was arbitrary. |
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Proposition 45. Let S,T be two topologies on X with S < T. If X is compact
under T, it is compact under S. However, if X is compact under S, it is not
necessarily compact under T .

Proof. ( = ) Let [ J,cp Ux be an open cover of X under S, that is, with Uy € S
for all A. Since § < T, U, is also open in T for all A, and hence the open cover of
X under S is also an open cover under 7. But X is compact in 7, and thus there
exists a finite subcover | J .y, Uy with A’ < A finite. This finite subcover under T is
also a finite subcover under S, since all Uy € S, and hence X is compact under S.
( <= ) Consider any set X compact under S. Let 7 = P(X). We have S < T,
but X cannot be compact under T, since an open cover by singletons has no finite
subcover. |

Proposition 46. If X is compact Hausdorff under both S and T with S < T, then
S=T.

Proof. Let Xgs denote X under S and let X7 denote X under 7. Consider the
identity map i : X7 — Xg given by i(z) = x. The preimage of any open set U
under the map is itself. Because T is finer than S, U must be open in the domain,
and hence ¢ is continuous. Since 7 is a bijection and the domain is compact and the
range is Hausdorff, 4 must be a homeomorphism, and in particular, its inverse i !
must be continuous. This implies 7 < S, and thus S = T. [

Proposition 47. Any topological space X with the cofinite topology is compact.

Proof. If X is empty, it is vacuously compact. Otherwise, let | J,c., Ux be an open
cover of X. Since X is nonempty, there exists a nonempty U), for some Ay € A.
Uy, nonempty and open in the cofinite topology implies X\U,, is finite. For all
x € X\Uy,, let U, denote any Uy in the open cover containing z. There must exist
at least one such set for all = by the definition of cover. Then Uy, u |, X\Us, U, is

a finite subcover of X, hence X is compact.

Proposition 48. Let the cocountable topology on R be the topology under which
U < R is open if and only if either U = & or R\U is countable. Then R under the

cocountable topology is not compact.

Proof. Consider |,y R\N U {n}. Each R\N u {ng} with no € N is open since
its complement, N\{ng}, is countable. Additionally, for all x € R, if z € R\N,
x € R\N U {0}. If x = ng for some ny € N, then z € R\N u {ng}. Hence the
union is an open cover of R under the cocountable topology. However, no proper
subcollection of the open cover is a cover, since if any R\N u {ng} is missing for
some ng € N, then ng is missing from the cover. Since this open cover has no finite
subcover, R is not compact under this topology. [

Proposition 49. Let {A,|n € N} be a countable family of compact, connected sub-
sets of a Hausdorff space X such that A, > A, 41 for alln e N. Let A =),y An-
A is nonempty if and only if each A, is nonempty.

Proof. (= ) If Ay, is empty for some ng € N, then A = ()
implies A = 7.

A, c Apy = I

neN
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( <= ) Suppose for a contradiction that A,, is nonempty for all n € N but A is
empty. Consider U = UnEN\{O} Ap\Ap,.

Since each A, is compact and X is Hausdorff, each A, is closed in X. Addi-
tionally, each A,, ¢ Ag for all n > 0 by induction, so they must be closed in the
subspace topology on A, thus their complements Ag\A, must be open in the sub-
space topology on Ag. A empty implies U must be a cover of Ag because if x € Ag
but x ¢ Ag\A, for all n > 0 € N, then x € A, for all n > 0. But since x € Ay and
xe A, foralln >0, x € A, a contradiction to A = ¢J. Thus U is an open cover of
Agp.

Ag compact implies U admits a finite subcover (,,cp Ao\A, with A < N\{0} finite.
Since each A, D Ap+1, Ap\An < Ap\An+1. Since A is a nonempty, finite subset of
N, it contains a maximal element N. By induction, Ag\Ax D [J,,cp 40\An. But
this gives Ag\Axy D Ay, which implies Ay = J since Ay < Ay, a contradiction.
Hence A cannot be empty. |

Proposition 50. Let {A,|n € N} be a countable family of compact, connected sub-
sets of a Hausdorff space X such that A, > A, for alln e N. Let A =),y An-
A is compact.

Proof. Since each A, is compact and X is Hausdorff, each A,, is closed and hence
A is closed, since it is an intersection of closed sets. Because A is a closed subset
of Ay compact, it is compact in the subspace topology on Ag, hence compact in X,
since the topology induced on A by Ag is the same as the topology induced on A
by X. |

Proposition 51. Let {A,|n € N} be a countable family of compact, connected sub-
sets of a Hausdorff space X such that A, D Apy1 for alln e N. Let A =),y An-
A is connected.

Proof. Suppose for a contradiction A is not connected. Then A = C' u D with
C, D clopen, disjoint, and nonempty. Since C and D are closed in A compact and
closed, C and D are compact in A, and hence X by the argument in the proof
of Proposition 50. X Hausdorff implies there exist disjoint, open U,V < X
containing C' and D respectively.

Since A c CuD c UuV, A(UuV) = . Rewriting, AA\(U uV) =
(Mpen A\ (U U V) = Moy (Ax\ (U U V)). Since A, D Apqq for all n € N, we
have A,\(U u V) 2 Ap1)\(U u V) for all n € N. Additionally, A,\(U v V) =
Ap N (X\(U uV)) for all n € N, an intersection of closed sets, hence closed. Thus
A \(U u V) are closed subsets of A,, compact, hence also compact for all n € N.

Since we have a family of nested, compact subsets with an empty intersection,
by Proposition 49, it must be that A, \(U u V) = J for some ng € N, and thus
Ap, c U uV. Note AnC # F implies A, nU # & and A n D # J implies
Ap, NV # . Since A, nU and A,, NV are nonempty, disjoint clopen subsets of
Ay, that cover A,,, A, cannot be connected, a contradiction. [

Proposition 52. Let X, Y be topological spaces with Y compact. Then the projec-
tionm: X xY — X is closed.



TOPOLOGY NOTES 11

Proof. Suppose for a contradiction C < X xY is closed but 7(C') is not closed. Then
7(C) has a limit point zg outside of itself. 77 1({xo}) = {x¢} x Y must be contained
in the complement of C closed, thus for every x = (z9,y) € 7~ 1({z0}), we have a
basic neighborhood U (y) x V (y) of z contained in the complement of C. | J,cy V(v)
is an open cover of Y and thus admits a finite subcover since Y is compact. Letting
A index the finite subcover, we consider U = [),, U(y), an open set since A is finite.

C' is nonempty since m(C) is not closed, so consider (c1,c2) € C. If U intersects!
m(C) at some point x1, we have (x1,c2) € U(cg) x V(cg) and (x1,¢2) € C. But the
U(y) x V(y) were chosen to miss C, so U misses 7(C), yet there cannot be an open

neighborhood of xy missing 7(C') since zg € 7(C). [

Proposition 53. Fvery closed subset of a countably compact space is countably
compact.

Proof. The proof is exactly similar to the proof of closed subsets of compact spaces
being compact, replacing each instance of ‘open cover’ with ‘countable open cover’
in the proof. [

Proposition 54. Let A be a subset of a T} space X. If x is a limit point of A, then
every open neighborhood of x contains infinitely many points of A.

Proof. Let U be an open neighborhood of x and suppose U n A is finite. Then
(U n A)\{z} is closed, since it is finite and X is 73. Then X\((U n A)\{z}) =
{z} U X\(U n A) is open, and ({z} u X\(U n A)) n U is an open neighborhood of
x not intersecting A at any point other than z, but x is a limit point of A. |

Proposition 55. A T space X is countably compact if and only if it is limit point
compact.

Proof. ( =) Suppose there exists an infinite subset B of X with no limit points.
Let A be a countable subset of B, which again cannot have any limit points. By
Proposition 34, the subspace topology on A is discrete. Hence | J,4{a} is a
countable open cover of A with no finite subcover, so A cannot be countably com-
pact. Since A has no limit points, it contains all of its limit points, and thus is
closed. A closed but not countably compact implies X is not countably compact by
Proposition 53.

( <) Let U2, Ui be a countable open cover of X. If no finite subcollection
covers X, let x,, be a point not in Uy u ... u U,_1 and let U, in the cover contain
Zn. Let A = |J;eniwi}. Note that for all i € N, U; n A must be finite, since U;
cannot contain any x, for n > 4. Since the U; cover X, all points in X have an open
neighborhood which intersects A finitely many times, so no point can be a limit
point of A by Proposition 54. |

Proposition 56. Let X be a metric space. For nonempty A,B < X, define
d(A, B) = inf{d(z,y)|x € A,y € B}. Also define for all x € X, d(x, A) = d({z}, A).
For z € X, d(x,A) =0 if and only if v € A.

HUunv= &, then U misses V. If U n'V # &, then U intersects V.
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Proof. ( = ) By the approximation property of the infimum, for all 6 > 0, there
exists a € A such that 0 < d(x,a) < §. Then for all 6 > 0, Bs(z) n A is nonempty,
soxe A

( <= ) z € A implies for all § > 0, Bs(z) n A is nonempty. Then for all § > 0
there exists a € A such that d(z,a) < J, so d(x,A) = 0 since it is a nonnegative
number less than all § > 0. |

Proposition 57. Let X be a metric space. If A is compact, then d(x, A) = d(z,a)
for some a € A.

Proof. Define d, : A — R to be d(z,a) for all « € A. d, is continuous since the
inverse image of any basic open interval (a,b) is (By(z)\Cq(z)) n A, open in the
subspace topology on A. Since d is a continuous function from a compact set to R,
the infimum is in the image of d by the extreme value theorem, but the infimum is
d(z, A). [

Proposition 58. Let X be a metric space. Define Bs(A) = {z € X|d(z,A) < J}.
Then Bs(A) = Jea Bs(a).

Proof. (c) x € Bs(A) implies d(z, A) < ¢, which by the approximation property of
the infimum means there exists ag € A such that d(z, A) < d(z,ap) < d so x € Bs(ap)
and hence z € | J,. 4 Bs(a).

() x € Jyeq Bs(a) implies « € Bs(ag) for some ag € A, and d(x,ag) < 6 implies
d(xz,A) < 6 and hence x € Bs(A). [

Proposition 59. Let X be a metric space. Suppose A is compact and U < X is an
open set containing A. Then there exists § > 0 such that Bs(A) < U.

Proof. It U = X, then any ¢ > 0 will suffice. Otherwise, let dx\yy : A — R be
given by d(a, X\U) for all a € A. For two points aj, a2, we have d(a;, X\U) =
infex\v d(a1, ) < infyex\p d(ar, az) +d(az, x) = d(a1,az2) + d(ag, X\U). Therefore
|d(a1, X\U) — d(az, X\U)| < d(ay,az2). Hence for all € > 0, d(aj,a2) < € implies
ldx\v(a1) — dx\p(az)| <€, thus dx\y is continuous.

Since dy\y is a continuous function with a compact domain, it attains its min-
imum for some a,, € A. Since A is a compact subset of a Hausdorff space, it is
closed, and hence dx\i;(am) = 6 > 0 since X\U cannot contain points in the closure

of A. Hence Uyen By y(am)(@) = Bay y(am)(A) < U. [

Proposition 60. Let X be a metric space. Let A = {(x,y)|ly < 0} be the lower
halfplane of R%. Let U = {(z,y)|(z,y) < (z,e%)}. Then there exists no § > 0 such
that Bs(D) c U.

Proof. A is closed since its complement R x (0,00) is open. Suppose there exists
d > 0 such that Bs(A) = (J,cq Bs(a) does not intersect X\U. Then for all a =
(a1,0) € A, (a1,e™) ¢ Bs(a1,0). But d((a1,e), (a1,0)) = e, which is less than §
for a; < Iné. [ |

Proposition 61. Let X be a metric space. Let f : X — X be an isometry and X
be compact. f is surjective.
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Proof. f is continuous and injective as was shown on the midterm. Suppose for a
contradiction a ¢ f(X) for some a € X. Since X is compact and f is continuous,
f(X) is compact. Since X is a metric space, it is Hausdorff, thus f(X) is closed.
Hence a € X\ f(X) implies there exists € > 0 such that Be(a) misses f(X). Define
a sequence inductively by z¢p = a and x,11 = f(z,). Since Bc(a) misses f(X),
d(xo,z;) = € for all i > 0. Also, d(x;,zi+1) = d(f(xs), f(zit1)) = d(Tit1, Tit2).
For any m < n, d(zg, n—m) = € implies d(f™(z0), f"™(xn—m)) = d(zm,xn) = € by
induction.

If X is finite, f is surjective since it is injective, so assume X is infinite. Addition-
ally, x,, # z,, for m # n, since otherwise if m # n and x,, = xy,, then x,,_1 = Tp_1
since f is injective. But then by induction x¢g = x; for some ¢ > 0, which cannot
be since xg = a ¢ f(X). Therefore the sequence must be infinite. X compact im-
plies this sequence has a limit point . By Proposition 54, BE/Q(:U) intersects the
sequence at infinitely many points. But if x,, and w,, are contained in B () for
n # m, then d(zy, Tm) < d(xn, ) + d(zm, ) < €/2 + €/2 = €, a contradiction. W

Proposition 62. Let X be a metric space. Let f: X — X be an isometry and X
be compact. f is a homeomorphism.

Proof. Since f is a continuous bijection from a compact space to a Hausdorff space,
it is a homemorphism. |

Proposition 63. Let X be a metric space. Let f : X — X be a contraction and X
compact. f is continuous.

Proof. For all € > 0, d(x,y) < e implies d(f(x), f(y)) < cd(z,y) < ce < e. [ ]

Proposition 64. Let X be a metric space. Let f : X — X be a contraction and X
compact. If X is nonempty, then f has exactly one fixed point.

Proof. X nonempty implies f™(X) is nonempty for all n € N by induction® f
continuous and X compact implies f™(X) is compact for all n € N. X o f(X)
also implies f*(X) o f"*1(X) by applying f to both sets and using induction.
Therefore we have a countable family of nested compact sets which are all nonempty
and subsets of a Hausdorff space. By Proposition 49 and Proposition 50, A =
(Men f™(X) is nonempty and compact.

Let x be any point in A. Then for all n € N, there exists x,, such that x = f"(z,,).
Hence d(z, f(z)) = d(f™(zn), f* T (2,)) < *d(xn, f(x,)) by induction. A compact
in a metric space implies there exists § > 0, x € X such that Bs(z) > A, so
d(xn, f(zn)) < d. This gives d(z, f(z)) < "0 for all n € N, so d(z, f(z)) = 0. Hence
x = f(x). Thus every point in A is a fixed point of f and there must be at least
one such point.

Let = and y be two fixed points of f. Then d(f(z), f(y)) < cd(z,y) so d(z )
cd(z,y) and (1 — ¢)d(z,y) < 0. Since ¢ < 1 and is nonnegative, d(x,y) =
hence z = y. Hence a fixed point of f exists and is unique.

lc:L//\

27 (X) denotes n-fold composition of f
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Proposition 65. | J,,cn(3mrz: 3) is an open cover of (0,1) where the Lebesque Num-
ber Lemma fails.

Proof. We have shown already in class that this is an open cover. Suppose there
exists 6 > 0 such that every subset A ¢ Bj(x) for some = € (0,1) is contained in
some set of the open cover. For all § > 0, there exists N € N such that for all n > N,
|35z — 50| < 6. Then Bs(zrr + 5r95) is not contained in (5757, 57). But since it
contains 271% and (271%, 2%) is the only set in the cover containing Qn%, it cannot
be contained in any other set of the open cover, a contradiction. |

Proposition 66. The I-point compactification R of R is homemorphic to the unit
circle S*.

Proof. Let f: R — S1\{(0,1)} be given by f(t) = (%, ﬁﬂ) t2 +1 > 0 for all
t € R, so the rational coordinate functions are continuous, thus f is continuous by
Proposition 21.

Let g : SN\{(0,1)} - R be g(u,v) = t%. (1 —v) # 0 for all (u,v) € SN\{(0,1)},
so g has continuous partial derivatives, and thus is diffentiable, hence continuous.

(o) = (&) / (1-551) = (#5) / (#5) = ¢
Fonten=((2)/ (14 55 (w2 1) (a2 1)

_ 2u(l—v)  w?—(1-v)?\ _ (2u(1—v) w2+402—1420—20> = (u,v)
T\ w2+ +1-200 w2+ (1-v)2 ) T\ 2—2v 2—2v T\

Since f has a double sided inverse, it is a bijection. It is also COHtinuOL/l\S, and
its inverse is continuous, so it is a homemorphism. R ~ S™\{(0,1)} implies R ~ S1
since S' is compact and Hausdorff and R is locally compact and Hausdorff and
noncompact. |

Proposition 67. D dense in X and U nonempty, open in X implies D nU = U.

Proof. (¢) D nU < U implies D nU < U. (D) Let V be any open neighborhood
of € U. Then V n U is nonempty by definition of closure and open since it is the
intersection of two open sets. D dense in X implies D n (V n U) is nonempty, so
V n (D nU) is nonempty, hence z € D n U. [

Proposition 68. No compact subset of Q contains (a,b) N Q for any a < be R.

Proof. Suppose for a contradiction A compact in Q and Q n (a,b) < A for some
a <beR. A compact in Q implies A compact in R since the inclusion map
is continuous. A compact in R Hausdorff implies A = A. Q dense in R implies

Qn (a,b) = [a,b] by Proposition 67. Hence Q n (a,b) A implies [a,b] < A, a
contradiction since [a,b] ¢ Q but A < Q. |

Proposition 69. Q is not locally compact.

Proof. Let U nQ be an open neighborhood of ¢ € Q. U open in the metric topology
on R implies U n Q = [ J,ca(ar, ba) nQ. By Proposition 68, any compact set in Q
does not contain any (ay, b)) N Q for any \. Hence no compact set contains U n Q,
so ¢ does not have a compact neighborhood. |
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Proposition 70. f: R — R continuous, then
(1) Jim [f(z)| =0 = (2) lim f(z) = +o0
(3) lim [f(z)] =0 = (4) lim f(z) =+t

Proof. If not (2), then IM, M’ € R,YN € R,3z, 2’ e R, (z > N A f(x) < M A2’ >
NAf(x') > M'). Let M" = min(M—1, M"). Then YN € R,3z € R, (z > N A f(z) >
M") since M" < M’. By the Intermediate Value Theorem, VN € R, 32" € R, (2" >
N A (M < f(2") < M)). M" < f(2") < M implies |f(2”)| < max(|M]|,|M"]),
since —f(z") < —M" < |[M"| and f(z) < M < |M|. Let M = max(|M]|, |M")).
Then YN € R,3z € R, (z > N A |f(z)] < M), so not (1). The proof of not (4)
implies not (3) is similar. |

Proposition 71. f: R — R continuous is proper if and only if (2) and (4).

Proof. ( = ) If not (2), then IM € R,YN € R,3xz € R,(z > N A |f(z)| < M)
by Proposition 70. Then VN € R,3z € R,(x > N A x € f~1([-M, M])), so
f~Y([~M, M]) is unbounded, hence not compact by Heine-Borel. Since [—M, M] is
compact but f~1([—M, M]) is not, f is not proper. The proof of not (4) implies f
is not proper is similar.

( <) Since f is continuous, the inverse image of closed sets is closed. Let C' < R
be bounded, thus contained in Bs(0) for some 6 > 0. (2) implies IN € R,Vz €
R,(z > N = f(x) > §). If f71(C) unbounded above, then YM € R, 3z € R, (x >
M arze f71C)). Let M = N. Then 3z e R, (x > N Az € f~1(C) A f(z) > §), but
f(C) = Bs(0), a contradiction, so f~1(C) is bounded above. A similar argument
shows f~1(C) is bounded below using (4). Since the inverse image of closed and
bounded sets is closed and bounded, by Heine-Borel, the inverse image of compact
sets is compact, so f is proper. [

Proposition 72. Nonconstant polynomial functions p : R — R are proper.

Proof. From analysis we know nonconstant polynomial functions from R — R are
continuous and satisfy (2) and (4), hence by Proposition 71, are proper. [

Proposition 73. For X, Y Hausdorff, continuous f : X — Y is proper if and only
sz XY given by

CJf(@x) reX
)= o0 T =00

1S continuous.

Proof. (=) Let U be open in Y. If o ¢ U, then U is open in Y and o ¢ f_l(U).
Hence f~Y(U) = f~%(U), open in X since the inverse image of an open set in Y
uAnder f is an open set in X. But open in X also implies open in X by definition of
X.

If 0 € U, then U = Y\C U {0} for some C compact in Y. We have f~1(U) =
FHNC) u {oo} = fAHY)\HO) U {o} = X\ f1(C) U {0} Since f is proper,
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C compact in Y implies f~1(C) compact in X, hence X\ f~(C) u {00} is open in
X.

(<) Let C be any compact set in Y. Then Y\C u {o0} is open in Y. 7
continuous implies f~1(Y\C U {o0}) = f~1(Y\C) u {0} = X\ f~1(C) U {00} open
in X, hence f~!(C) must be compact in X, and thus f is proper. |

Proposition 74. If f1 : X1 — Y71 and fo : Xo — Y5 are continuous, then fi X fo:
X1 x X9 —> Y] x Y5 is continuous.

Proof. Let U be any open set in Y7 x Y5. By the definition of the product topology,
U= U/\eA Uy x V) for Uy open in Y7, V) open in Ys. We have (f1 x fo)71 ( ) =
(f1x f2)” U,\EAUAXV)\ U,\eA(fle2)_l(U)\><V)\ UAeAfl UA>Xf2 (V)
Slnce f1 and f2 are continuous, f;*(Uy) is open in Xi, f, !(V3) is open in X, so
FrHUY) x £ H(Vy) is open in X7 x Xj for all A e A. Hence (f; x fo)~*(U) is open
in X7 x X5y since it is a union of open sets. [ |

Proposition 75. Suppose f1 : X1 — Y1 and fo : Xo — Yo are continuous, X1 and
Xo are nonempty, and Y1 and Yo are Hausdorff. Then f1 X fo: X1 x X9 > Y7 X Y5
1s proper if and only if f1 and fo are proper.

Proof. ( = ) Let C; < Y7 be compact. Since X5 is nonempty, choose 3 € Xo.
C1 x {f2(x2)} is compact in Y7 x Y5 since the product of two compact sets is compact,
o (fi % f2)HCr x {falwa)}) = FiH(C1) % f3 ({fa(w2)}) is compact. Let m :
X x X9 — X be the natural projection. 1 (f; (C1) x f3 ' ({fa(z2)})) = f; 1(Cy)
since fy L f2(x2)} is nonempty. Since 7 is continuous, i L(Cy) is compact, thus f
is proper. fs is proper by a similar argument.

( <) Let K be any compact subset of Y7 x Y,. Again, 71 (K) and my(K) are
compact and 71 (K) x m2(K) is compact. Hence (f; x fo) }(m(K) x ma(K)) =
i (m(K)) x fy ' (ma(K)) is compact since f; and fo are proper. Since Y; and Y3
are Hausdorff, Y7 x Y5 is Hausdorff, hence K is closed. By Proposition 74, f; x fo
is continuous, so (f1 x fo) "1 (K) is closed. But (f1 x fo) 1 (K) < (f1 x fo) (w1 (K) x
mo(K)) compact, so it is compact. [

Proposition 76. If f: X - Y and g: Y — Z are continuous, go f is proper, and
Y is Hausdorff, then f is proper.

Proof. Let C be a compact set in Y. Since g is continuous, ¢(C) is compact in Z.
g o f is proper thus (g o f)~!(g(C)) is compact in X. Y is Hausdorff hence C' is
closed. f is continuous implies f~(C) is closed. C' = g~1(g(C)) implies f~(C) is
a closed subset of (g o f)71(g(C)) compact, so it is compact. [ |

Proposition 77. If f: X - Y and g: Y — Z are continuous, g o f is proper, and
f is surjective, then g is proper.

Proof. Let C be a compact set in Z. Then (go f)~ 1( ) is a compact set in X since
g o f is proper. Since f is continuous, f((go f)~'(C)) is compact in Y. But f is
surjective, thus f((go f)~1(C)) = g~ 1(O). [
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Proposition 78. If fo, f1 : X — Y are homotopic, go,g91 : Y — Z are homotopic,
then gog o fo and g1 o f1 are homotopic.

Proof. Let F be the homotopy between fy and f; and let G be the homotopy between
go and g1. Let H = G o (F x id[p ;). H is continuous since it is a composition of
continuous functions. We have H(z,0) = G(F(x,0),0) = G(fo(x),0) = go o fo(x)
and H(z,1) = G(F(x,1),1) = G(f1(x),1) = g1 o fi(x), hence goo fo ~g1o f1. M

Proposition 79. All intervals in R are contractible.

Proof. Intervals are convex and any two continuous maps onto a convex set are
homotopic by the straight line homotopy, hence the identity map is homotopic to
any constant map. |

Proposition 80. Any contractible X is path-connected and has 7 (X,x) =~ 1 for
all z e X.

Proof. Let F be the homotopy between the identity map and the constant map
f(z) = xo for some contraction point rg € X. For all x € X, let v, = Flp)x;-
vz 18 continuous since restrictions of continuous functions are continuous. v,(0) =
F(z,0) = id(z) = x and v,(1) = F(z,1) = f(z) = xo, hence it is a well-defined
path from x to xg. We can thus construct a path between any two z1,x2 € X using
Vor * Vap -

Let v be any loop with basepoint zy. Note F(v(s),t) gives a homotopy between
v(s) and the constant loop ez, (s) = zo. However, the basepoint need not be fixed,
so this is not necessarily a path-homotopy.

Consider the image of the basepoint, v4,(s) = F(zo,s), which is a loop based
at xg since xg is the contraction point. We can prepend and append this path
to the homotopy to fix the basepoint in place. Let 7L (s) = 7z, (ts) and v(s) =

F(vy(s),t). Let H(s,t) = <’;é\o vl % 7;0) (s). This is well defined since 7% (1) =
F(zo,1 x t) = F(x,t) = F(7(0),t) = ~*(0) = 'yt(l)j 7%,(0). The basepoint
is fixed since H(0,t) = % (0) = xo and H(1,t) = ~L (1) = xzo. Hence H is
a path-homotopy from H(s,0) = (7/9; # 70 % 'ygo) (s) = (€xp * F(7,0) % ey) (8) =
(ea + 7 % €ay) () and H(s,1) = (v, 71 274, ) (8) = (o * €20 *Yp) (5). Finally,

Y ~p (€zy %77 % €g) and egy ~p (Yoo * €xo * Vap ), HENCE ¥ ~p €5, 50 T (X, 20) = 1.
Since X is path-connected and paths induce isomorphisms on fundamental groups
with different bases, we have 71 (X, z) = 1 for all z € X. [

Proposition 81. If Y is contractible, then any two continuous fo, f1: X — Y are
homotopic.

3A wide hat over a path denotes the inverse path. That is, 'y/(;) =7(1—3s)
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Proof. Let F' be the homotopy from the identity map to the constant map f(x) = xg
for some contraction point xg € X. Let

Hiz.0) = {F<f0<x>,2t> tefo,;]
F(fi(x),2-2t) tel[;z,1]
H is well defined since F(fo(z),1) = F(fi(x),1) = xo and it is continuous by the
gluing lemma. It is a homotopy since H(x,0) = F(fo(x),0) = fo(z) and H(z,1) =
F(fi1(2),0) = fi(z). n
Proposition 82. If X is contractible and Y is path-connected, then any two con-
tinuous go, g1 : X — Y are homotopic.

Proof. Let F be the homotopy from the identity on X to the constant function
f(x) = xo for some contraction point xg € X. Let H(z,t) = go(F(z,t)) and
G(z,t) = q1(F(z,t)). H and G are continuous since they are compositions of
continuous functions and H is a homotopy from H(z,0) = go(F(x,0)) = go(id(x)) =
go(x) to H(x,1) = go(F(x,1)) = go(zo). Similarly, G is a homotopy from ¢;(z) to
g1(z0). Let v be a path from go(xg) to gi(xp). Then K(x,t) = y(t) is a homotopy
from go(x0) to g1(x0). go(z) ~ go(zo) ~ g1(x0) ~ g1(x), hence go(x) ~ g1(x). [ ]
Proposition 83. Let S = {(0,y) | y € [0,1]} U {(x,0) | = € [0,1]}. S = R? is
star-convex but not convez.

Proof. Let z = (0,0). Consider any y = (z1,41) € S. If 21 = 0, then Ty = (0,ty;) <
S for t € [0, 1] since ty € [0, 1] if both ¢,y € [0, 1]. The argument is similar if y; = 0,
so S is star-convex.

S is not convex since for z = (1,0) and y = (0, 1), the line segment 7y = (¢,0) +
(0,1 —¢) is not a subset of S since (3,3) ¢ S. [

Proposition 84. Let f(s) = (cosws,sinms). Let T = {f(s) | s € [0,1]}. T is
contractible but not star-convez.

Proof. Let F(s,t) = (1—t)s. Let G = foF. G is continuous since it is a composition
of continuous functions. G is a contraction of 7" since G(s,0) = (cos7s,sinms) and
G(s,1) = (cos0,sin0) = (1,0).

For any p = (x1,y1) € T, we have 27 + y? = 1 since cos’z + sin?z = 1 for all
z € R. Let y = mz + b be any line. This line intersects 1" at most twice since
22 + (max + b)?2 = 1 has at most two roots. Hence, T is not star-convex since any
Ty can contain at most two points of T but Ty contains infinitely many points if
T # Y. [
Proposition 85. Any star-conver set S is contractible hence has trivial fundamental
group.
Proof. Let xog € S be such that Zgy < S for all y € S. Let F(z,t) = (1 —t)z + txo.

F is continuous as we’ve shown in class. Since Zgz < S for all z, F(S,t) = S, so F
is a valid homotopy. Since F(x,0) = z and F(z,1) = xg, it is a contraction. |

Proposition 86. Let S ¢ X and f be a retraction X — S. Then for any xg € S,
the homomorphism fy @ m (X, x9) — w1 (S, zg) is surjective.
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Proof. Consider any g € m1(S,zp). Choose any v : I — S as a representative of
g. Let i : S — X be the natural inclusion map. Then f.(i.([7])) = f«([i 07]) =
[foion]=[ids o] = [v], hence f is surjective. [

Proposition 87. For any two topological spaces X and Y, there is a natural iso-
morphism m (X x Y,z x y) = m (X, x) x m (Y, y).

Proof. Let ¢ : m(X x Y,z x y) — m(X,z) x m(Y,y) be given by ¥([v]) =
(M1« ([7]), T2 ([v])), where TT; and TTy denote the natural projections onto the first
and second coordinates.

Consider any g € m1(X x Y,z x y) and let [y1] = [y2] = g for some representatives
71,7v2. Then there exists F(s,t) continuous such that F(s,0) = vi(s), F(s,1) =
72(s), F(0,t) = F(L,t) = z x y. We have 9([n]) = ([IT1 o m1], [Tz 0 11]) and
V([y2]) = ([TT1 o ¥2],[M2 0 72]). Let G = TI; o F. G is continuous since it is a
composition of continuous functions. We also have G(s,0) = TT1(F(s,0)) =TTy oy
and G(s,1) =TI (F(s,1)) = TTjova, so TTjoy; ~, TTioye. Similarly, TTaoy; ~p, TTao7s,
so ¥([71]) = ¥([72]), hence 9 is well-defined.

1) is a homomorphism since

Y([nllr2]) = ©([7 = 2])
= (Ms([y1 # 72])s M2x([71 * 12])
= ([ o (v #72)]), [M2 0 (v1 *72)])
= ([(TMy o y1) * (T 0 92)], [(M2 0 y1) = (M2 0 72)])
= (M ([ DMs([v2]), Mos ([r1 D24 ([12]))
= (v ([r2])

Consider any (g,h) € m(X,x) x m1(Y,y) and let [y1] = g and [y2] = h for some
representatives 7, and 2. Let vy(t) = (71(t),72(¢)). This is a well-defined loop in
X x Y since v(0) = y(1) and since + is continuous as the coordinate functions are
continuous. We have 1:([1]) = (T ([7]), TTa([])) = ([T, [Tao7]) = (1 []) =
(g, h), hence 9 is surjective.

Consider any element g of the kernel of 1) and let [y] = g for some representative
7. Then ¥([v]) = ([TTi o], [TT2 0 v]) = ([ex], [ey]). Hence, v ~, ezxy, since we can
take the product of the path-homotopies IT; oy ~, e; and TTyoy ~;, ¢, and run them
on each corresponding coordinate. Thus v has trivial kernel, so it is injective. W

Proposition 88. For continuous loops v1,7v2 on a topological group G based at the
identity element e, define v1oy2 by v1 ov2(x) = v1(x) - y2(x), where the dot denotes
the group operation. This loop is continuous and path-homotopic to 1 * ~vo. This
induces a binary operation ¢ on 71(G,e) which is the same as *.

Proof. Since 1 ¢ 3 = - 0 (1 X 72) where - denotes the group operation which is
continuous for a topological group, it is a composition of continuous functions, hence
continuous. Additionally, 1 ¢ ¥2(0) = 71 ¢ ¥2(1) = e, so it is also a loop based at e.

Let F(t1,t2) = 71(t1) - y2(t2). For t; = to, we have v; ¢ v2. For to = 0 followed
by t1 = 1 we have 1 * 2. Deforming the diagonal into the bottom-edge followed by
the right-edge shows they are path-homotopic.
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Since ¢ and * behave the same on equivalence classes, they are the same operation
on m1(G,e). [ ]

Proposition 89. v ¢ y2 is also path-homotopic to vo * 1.

Proof. Using the same F as in the proof of Proposition 88, we see the path t; =0
followed by to = 1 gives o * 1. |

Proposition 90. For every topological group G, the fundamental group m (G, e) is
abelian.

Proof. By Propositions 88 & 89, [11][72] = [ #72] = [y1072] = [2*m] =
[v2][r1]- |

Proposition 91. If X is path-connected and h : X — Y is a homeomorphism, then
Y s path-connected.

Proof. If Y has fewer than two points, then it is vacuously path-connected. Oth-
erwise, consider y1,ys € Y. Since X is path-connected, there exists a path v from
h=Y(y1) to h™1(y2). Then h o~ is a path from y; to yo since it is continuous as
the composition of two continuous functions and (hov)(0) = h(h™1(y1)) = y1 and
(hov)(1) = h(h~(y2)) = y2, where we have used that h is bijective. [

Proposition 92. If M s locally m-Fuclidean, then for each p € M, there exists an
open neighborhood of p homeomorphic to Bs(x) < R™ for some x € R™ § € RT.

Proof. For any p € M, there exists an open neighborhood U of p homeomorphic
to some open V < R™. Since open balls form a basis for the standard topology
on R™, V' = Jycp Bs, (xy) for some index set A. Let Bs,, (x),) contain the image
of p under the homeomorphism. Then the inverse image of B, (),) under the
homeomorphism contains p, is open by continuity of the homeomorphism, and is
homeomorphic to B(;XO (@rg)- |

Proposition 93. A locally m-FEuclidean space M is path-connected if and only if it
18 connected.

Proof. ( = ) Suppose for a contradiction there exist U, V', open, nonempty, and
disjoint that cover M. Consider z € U,y € V, and v a path from z to y. Then
7~ 1(U) and y~1(V) are disjoint since U amd V are disjoint, and v =1 (U)uy~1(V) =
Y HU v V) =41 (M) = [0,1]. Furthermore, y~}(U) and v~1(V) are open and
nonempty, since 7 is continuous and 0 € y~}(U) and 1 € y~1(V). But then [0,1] is
disconnected.

(<= ) If M is empty, then it is vacuously path-connected. Otherwise, consider
x € M and let P denote the set of points in M path-connected to x. Consider any
point y € P. M is locally Euclidean, so there exists an open neighborhood U of y
homemorphic to some ball in R” by Proposition 92. By Proposition 91, U must
be path-connected, and in particular, U < P since y is path-connected to x and to
every point in U, so x is path-connected to every point in U. Hence P is open.

If the complement of P is empty, then P = M so M is path-connected. Otherwise,
consider ¢ € M\P. As before, ¢ contains a path-connected open neighborhood W
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since M is locally Euclidean. If any point in W were path-connected to x, then ¢
would be path-connected to x since W is path-connected, so we must have W <
M\P, so M\P is open. P nonempty, clopen in M connected implies P = M. |

Proposition 94. If X is path-connected and xy € X, then m(X,zo) = 1 if and
only if any two paths in X with the same endpoints are path-homotopic.

Proof. If X has fewer than two points, the proposition follows immediately, so as-
sume X contains at least two points.

(=) Let 71, 72 be paths from x1 to x2 in X. Then v; *-3 is a loop based at z1,
so contractible since 71 (X, ) is trivial for all basepoints z since it is trivial at xg
and X is path-connected. Since y1 * 42 ~p €z,, We have 1 % Y3 % 72 ~) €5, * 2 since
path-homotopy is an equivalence relation and = is well defined on the equivalence
classes. But this gives v1 ~;, 2.

(<= ) Let 71,72 be two loops based at xg. Since they are paths with the same
endpoints, they must be path-homotopic, so m (X, xg) = 1. |

Proposition 95. For n € N\{0}, the map f : C\{0} — C\{0} defined by f(z) = 2"
18 a covering map.

Proof. Let U = C\{z € R|lz > 0}. Let V} for 0 < k£ < n to be the set of all

points in C\0 that can be written as re® with » > 0 and % < ¢ < W Let

g(re®) = %7“62?. g is a continuous inverse of f|y therefore f|y, is a homeomorphism
between Vj, and U. Hence, the Vj evenly cover U. Let Uy = C\{re?|r > 0},
then @g(z) = z¢ is a homeomorphism from U to Uy. Let Vio = ¢o(Vk), then

flver = ¢ (f(pe(2))) is also a homeomorphism, so f~1(C\Vyx) = Uy, so Vi
evenly covers Uy. " |

Proposition 96. Ifp:Y — X is a covering map, X is connected, and p~*(x) has
k elements for one x € X, then p~1(x) has k elements for all z € X.

Proof. Let K < X be the set of k-covered elements. K is non-empty by assumption.
Consider any element x € K. Since p is a covering map, there exists an open
neighborhood U of p such that p~1(U) =~ U x A for some discrete set A. But since
p~!(z) has k elements, we must have A =~ (k). Hence, every y € U is k-covered, so
U c K, thus K is open. A similar argument shows X\ K is open, so K is nonempty,
clopen in X connected, hence K = X. |

Proposition 97. If f: Z - Y and g: Y — X are covering maps such that for all
re X,g () is finite, then go f is a covering map.

Proof. If X is empty, the proposition follows vacuously. Otherwise, consider any
x € X. Since g is a covering map, there exists an open neighborhood U of z
such that g7 (U) = yep Vi, where the V) are disjoint and gly, : VA — U is a
homeomorphism for all A € A.

Let vy = g~ !(z) n Vj for all A € A. Each vy has an evenly covered open neigh-
borhood W), since f is a covering map. Let K = (o) 9(Wx n Vy). For all X € A,
g(Wx n'Vy) is open since W n V), is an intersection of two open sets and ¢ is a local
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homeomorphism, in particular open. A is finite since g~!(x) is finite, so K is open
since it is a finite intersection of open sets g(Wy n V). Since vy € Wy n V), for all
AelMN zeK.

Let each f~1(W)) = Usea H2 be the even cover of each Wy. Then

(goHNTMK)= (] ¢ 'WanVa)nH]
AeA,JeA

This provides an even cover of K under go f. |

Proposition 98. S' = R? is a deformation retract of R?\{0}.

Proof. Let H : R2\{0} x I — R2\{0} be given by H (z,t) = (1 —t)x+tﬁ. H is well-
X

defined since for all z € R2\{0}, ||z # 0. It is known from analysis H is continuous.
For all v € S, |v|| = 1, so H(v,t) = v — tv + tv/1 = v. Since H(z,0) = z and
H(v,1) = v/|jv], it is a deformation retraction.

|

Proposition 99. S' c R? cannot be a deformation retract of R2.

Proof. By Proposition 100, if S were a deformation retract of R?, its fundamental
group would be trivial, but its fundamental group is Z, which is not isomorphic to
the trivial group. |

Proposition 100. If f : X — A is a deformation retract and a € A, then the
induced homomorphism fy : m(X,a) — m (A, a) is an isomorphism.

Proof. f, is surjective by Proposition 81. Suppose [7] is in the kernel of f,. If H
is the given deformation retraction, then H(vy,0) =~ and H(v,1) = fo~. Since the
base-point is inside the retract, it remains fixed, so v is path-homotopic to f o ~.
But f o+ is path-homotopic to the trivial loop since [7] is in the kernel of fi, so
by transitivity of path-homotopy, v is path-homotopic to the trivial loop, hence
the kernel of f, is trivial, and thus f, is injective. But a homomorphism that is a
bijection is an isomorphism. |

Proposition 101. Let xg be any point in R2\{0}. x¢ is a retract of R? given by the
constant map, but ro cannot be a deformation retract.

Proof. If zy were a deformation retract of R?\{0}, its fundamental group would
be isomorphic to Z by Proposition 100 and Proposition 98, but zy has trivial
fundamental group and Z is not isomorphic to the trivial group. |

Proposition 102. Z % 7Z x Z.

Proof. If the two groups were isomorphic, then Z x Z would be cyclic, since the
image of 1 under the isomorphism would generate Z. But any (n,m) € Z x Z only
generates {(kn,km)|k € Z}, which cannot be all of Z x Z. [
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Proposition 103. No two of S,5% x S, and S' x S' x S are homeomorphic.

Proof. 1t suffices to show no two of 1,Z x 1, and Z x Z x Z are isomorphic, since
homeomorphic spaces have isomorphic fundamental groups. Since Z x 1 =~ Z and
Z x 7, X Z are not trivial, it suffices to show that Z % Z x Z x Z, but this follows by
a proof entirely similar to the proof of Proposition 102. |

Proposition 104. R? is not homeomorphic to R™ for any n > 2.

Proof. Let eg (1,0,...,0) € R™ It was proven by Michael Thaddeus that
71 (R™\{0},e0) = 1 for n > 2. But m(R*\{0},e0) = Z by Propositions 98 &
100. But if R?\{0} is not homeomorphic to R™\{0} for n > 2, then R? cannot be
homeomorphic to R™ for n > 2. [

1

Proposition 105. Let X =Y = S'. Let p: S — S be given by p(z) = 2" for
some n € N. Then the group of deck transformations D is isomorphic to Z/nZ.

Proof. Michael Thaddeus showed that p is a Galois covering, and for any Ga-
lois covering, we have that the group of deck transformations is isomorphic to
m1(X)/p«(m1(Y)). But m(X) = Z, and p«(m1(Y)) = nZ since the image of the
loop winding around S' once winds around n times under the map. |

Proposition 106. Let Z = S' x {a,b} with {a,b} discrete and let 7 : Z — S1 be
given by m(z,a) = z and let m(2,b) = 22. Let 20 = (1,a),2z1 = (1,b), 20 = (—1,b) so0
77 1(1) = {20, 21, 22}. Let X be the figure eight and let Y be the quotient of disjoint
union of two copies of Z under the equivalence relation zy ~ zh,z1 ~ 2}, 29 ~ 2.
Then the group of deck transformations Dy _x is trivial, which is not equivalent to
permuting the fibers, hence the covering is not Galois.

Proof. Each copy of Z has a group of deck transformations of order two, since the
copy of S that corresponds to 71(S!,b) can be rotated by m. However, the two
copies of S cannot be interchanged since this would destroy loops. Then deck
transformations on Y correspond to deck transformations on the two copies of Z, so
we check the cases where the deck transformations on the copies of Z are both trivial,
one of them is nontrivial, and both of them are nontrivial. Since the transformations
where at least one of them is nontrivial break loops through z;, it must be that the
group of deck transformations is trivial. |

Proposition 107. Let X — R? be the union of the spheres of radius 1 centered at
(0,0,1) and (0,0,—1), respectively.

Proof. Let U and V be the intersections of X with open balls of radius % centered
at (0,0,1) and (0,0,—1) respectively. Then X = U uV and U and V are path-
connected. Additionally, the spheres of radius 1 whose union is X are deformation

retracts of U and V' and their intersection has a point as a deformation retract.
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Hence, by Seifert-Van Kampen, the fundamental group is the free product with
amalgamation 1 %7 1, which is trivial. |

Proposition 108. Let w be a word of minimal length in its equivalence class in the
free group G« H. Then w is a sequence of alternating letters in G and H with no
identity elements.

Proof. Suppose w is a word of minimal length. If w contains identity elements, these
elements can be removed to produce an equivalent word with fewer letters, but w
is minimal, hence it cannot contain identity elements. Similarly, if w contained
two adjacent letters in the same group, they could be replaced by their product
yielding an equivalent word which would be shorter. But w is minimal, so this
cannot happen. [

Proposition 109. Let F be the following algorithm.:

F receives as its input a word w in the free product G+ H. F begins by removing
all identity elements from w. Then, it iterates through a word w left to right. Every
time two letters belonging to the same group are found adjacent, it replaces them
with their product. It terminates when no adjacent letters from the same group exist
in the word.

Running F on a word w yields the word of minimum length in the equivalence
class of w.

Proof. F must always terminate on any word since words have finite length and F'
either reduces the length of the word each iteration by replacing two letters with one
letter or removing identity elements, or it does nothing, in which case it terminates.
F(w) satisfies the conditions of Proposition 108 since F' removes the identity
elements from words and terminates only when words are an alternating sequence
of elements in G and H.

Since F' cannot add new letters, |F'(w)| < w. If w has no identity elements and
is a sequence of alternating letters in G and H, then F' terminates without editing
w, since no identity elements exist to be removed and no two adjacent elements can
be multiplied. If w and w’ are in the same equivalence class, then F(w) = F(uw')
since if they differ by any identity elements, those are removed by F anyway. If they
differ by element multiplication, F' exhausts all possible element multiplication, and
since group multiplication is associative, the result is the same. |

Proposition 110. Any word in G = H is represented by a unique word of minimal
length.

Proof. Let w be any word in the free product. Let w’ be any word of minimal length
in the same equivalence class as w. Then v’ = F(w') = F(w), so F(w) has minimal
length. But we also see that for any word of minimal length, v’ = F(w), so the
word of minimal length is unique. |

Proposition 111. If G and H are nontrivial, then the free product G = H is not
abelian.

Proof. If ¢ and h are nontrivial elements, then gh # hg, so the free product is not
abelian. m
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Proposition 112. The free product with amalgamation Z x7 7 is abelian, where the
map denoted is the identity map.

Proof. The group is isomorphic to Z itself, so it is abelian, as we’ve seen in class. W
Proposition 113. The fundamental group of a bouquet of n circles is Z*™.

Proof. We proceed by induction and Seifert-Van Kampen. For n = 1, the bouget is
homeomorphic to S*, so it’s fundamental group is Z. For n = 2, it’s homeomorphic
to the figure-eight, so its fundamental group is Z * Z. Assume the proposition holds
for n = k. For n = k + 1, we can decompose this as a union of a bouquet of &
circles union another circle with their intersection being a single point. Of course
to apply Seifert-Van Kampen we require open sets, but it’s clear that our sets are
deformation retracts of slightly larger open sets. The fundamental group is thus
7k« Z = 7*+1) 50 the proposition holds. |

Proposition 114. The fundamental group of the complement of n points in R? is
the same as the fundamental group of a bouquet of n circles.

Proof. The complement of n points in R? has a bouquet of n circles as a deformation
retract, so the proposition follows. [

Proposition 115. The fundamental group of the union of a torus and a disk cutting
through the torus is Z.

Proof. The disk has trivial fundamental group, while the torus has Z x Z as its
fundamental group. Their intersection, S', has Z as its fundamental group. The
torus and disk are deformation retracts of slightly larger open sets which are path
connected and cover the space, as well as having the circle as a deformation retract
of their intersection, so we have that the fundamental group of the space is 1%77Z x Z
by Seifert-Van Kampen, which is isomorphic to Z since the homeomorphism is just
an embedding of Z in Z x Z. |

Proposition 116. The fundamental group of the complement of n points on a torus
s the same as the fundamental group of a bouquet of n + 1 petals.

Proof. This follows since the complement of n points on a torus has a bouquet of
n + 1 petals as a deformation retract. |



